期刊文献+

Slope runoff study in situ using rainfall simulator in mountainous area of North China

华北山区坡地产流规律研究(英文)
下载PDF
导出
摘要 Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China.Simultaneously,rainfall,surface runoff,soil-layer flow,mantel-layer flow and soil moisture are monitored respectively.From the results,it is found that the hydrographs in all layers have the characteristics of rapid rise and fall.The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow.Surface flow,the main contributor,makes up more than 60% of the total runoff in the study area.It even exceeds 90% in the cases of high intensity rainfall events.Runoff coefficient(ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount,rainfall intensity and antecedent soil moisture,and the relationship can be well expressed by a multiple linear regression function α = 0.002P + 0.182i + 4.88Wa-0.821.The relation between the rainfall intensity and the lag time of three flows(surface runoff,soil-layer flow and mantel-layer flow) is shown to be exponential.Then,the result also shows that the recession constant is 0.75 for surface runoff,is 0.94 for soil-layer and mantel-layer flow in this area.In this study area,the dominant infiltration excess runoff is simulated by Horton model.About 0.10 mm/min percolation is observed under the condition of different rainfall intensities,therefore the value is regarded as the steady infiltration rate of the study area. Simulated rainfall is a valid tool to examine the runoff generation on the slope. 13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China. Simultaneously, rainfall, surface runoff, soil-layer flow, mantel-layer flow and soil moisture are monitored respectively. From the results, it is found that the hydrographs in all layers have the characteristics of rapid rise and fall. The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow. Surface flow, the main contributor, makes up more than 60% of the total runoff in the study area. It even exceeds 90% in the cases of high intensity rainfall events. Runoff coefficient (ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount, rainfall intensity and antecedent soil moisture, and the relationship can be well expressed by a multiple linear regression function α = 0.002P + 0.182i + 4.88Wa - 0.821. The relation between the rainfall intensity and the lag time of three flows (surface runoff, soil-layer flow and mantel-layer flow) is shown to be exponential. Then, the result also shows that the recession constant is 0.75 for surface runoff, is 0.94 for soil-layer and mantel-layer flow in this area. In this study area, the dominant infiltration excess runoff is simulated by Horton model. About 0. 10 mm/min percolation is observed under the condition of different rainfall intensities, therefore the value is regarded as the steady infiltration rate of the study area.
出处 《Journal of Geographical Sciences》 SCIE CSCD 2009年第4期461-470,共10页 地理学报(英文版)
基金 National Natural Science Foundation of China,No.40371025
关键词 simulated rainfall slope plot runoff generation process mountainous area of North China 降雨量 南方 试验 中国
  • 相关文献

参考文献7

二级参考文献27

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部