摘要
为了更加高效计算,并且更加便利地进行加权模糊推理来获得更多的有关加权模糊产生式规则的信息,提出一种某些库所中带有标识的模糊Petri网模型来进行加权模糊推理(WFR)。用来标记模糊Petri网运行的托肯值已经从[0,1]上的实数扩展到了模糊集合。提到的加权模糊推理(WFR)包括了局部权值,确定性因子和阈值等几种知识表示参数,参数用模糊数表示,通过提出的计算模糊推理结果的方法,可以更加高效地计算出最终的推理结果。
In order to execute weighted fuzzy reasoning more efficiently and conveniently, and capture more information of the weighted fuzzy production rules, an extended marked fuzzy Petri net (MFPN) model to represent weighted fuzzy reasoning (WFR) is presented. The token values that define the execution of the Petri net extend from the real numbers within the range of [ 0, 1 ] to the fuzzy sets. The WFR mentioned here includes several knowledge representation parameters such as local weight, certainty factor and threshold value. These knowledge representation parameters are expressed by fuzzy numbers. According to the computing methed proposed in this paper, the final consequence can be computed more efficiently.
出处
《计算机仿真》
CSCD
北大核心
2009年第6期175-178,236,共5页
Computer Simulation
基金
安徽省高校青年教师资助计划项目基金(2008JQW1124)
安徽省自然科学基金(KJ2008B109ZC)
安徽省高等学校省级自然科学研究项目(KJ2009B148Z)
高等学校优秀青年人才基金项目(2009SQRZ157)
关键词
加权模糊推理
模糊产生式规则
模糊数
Weighted fuzzy reasoning
Fuzzy production rules
Fuzzy number