期刊文献+

船舶动力定位系统的在线模型预测控制 被引量:7

Ship Dynamic Positioning based on Online SVR Model Predictive Control
下载PDF
导出
摘要 针对船舶动力定位问题提出了基于线性核函数在线支持向量回归的模型预测控制方案。在线支持向量回归算法的引入可以通过在线调整,确保预测模型的精确性。基于线性核函数的模型预测控制能够方便、迅速地求取控制律的解析表达式,保证控制律的最优性以及算法的快速性。仿真结果证明了该控制方案的有效性。 Model predictive control strategy based on linear kernel online SVR is proposed to solve ship dynamic positioning problem. The introduction of online SVR algorithm can ensure the accuracy of predictive model by online adjustment. Model predictive control based on linear kernel is able to obtain the analytical solution of control law conveniently and fleetly, which guarantee the optimal control law and expeditious algorithm. The simulation results show that the proposed control strategy is valid.
出处 《中国造船》 EI CSCD 北大核心 2009年第2期87-96,共10页 Shipbuilding of China
基金 国家自然科学基金重点项目(60234010)
关键词 船舶 舰船工程 动力定位 在线支持向量回归 模型预测控制 ship engineering dynamic positioning online support vector regression model predictive control
  • 相关文献

参考文献9

二级参考文献23

  • 1李定,顾懋祥.自适应神经网络用于船舶动力定位系统[J].中国造船,1995,36(4):20-28. 被引量:6
  • 2Cherkassky V, Mulier F. Learning from data: concepts, theory and methods [M]. New York: John Wiley and Sons,1998. 被引量:1
  • 3Sjoberg J. Zhang Q. Ljung L. Nonlinear black-box modeling in system identification: a unified overview[J]. Automatica. 1995.31(12) :1691- 1724. 被引量:1
  • 4Vapnik V. The nature of statistical learning theory[M]. NewYork :Springer-Verlag, 1995. 被引量:1
  • 5Vapnik V. Statistical learning theory [M]. New York: John Wiley,1998. 被引量:1
  • 6Osuna E, Freund R. Training support vector machine: an application to face dection [A]. Proceedings to CVPR'97 [C]. Puerto Rico: [s. n.], 1997.130-136. 被引量:1
  • 7Drucker H, Wu D, Vapnik V. Support vector machine for spam categorization [J]. IEEE Trans on Neural Networks, 1999.10(5) : 1048- 1054. 被引量:1
  • 8Suykens K. Nonlinear modeling and support vector machines [A]. IEEE Instrument and Measurement Technology Conference [C]. Budapest : Hungary.2001. 被引量:1
  • 9Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines [A]. Proceedings of IEEE NNSP'97 [C].Puerto Rico:[s. n.], 1997.24-26. 被引量:1
  • 10Davide Anguita. Andrea Boni. Luca Tagliafico.SVM performance assessment for the control of injection moulding. Processes and plasticating extrusion [J]. The International Journal of Systems Science. 2002,33 (9) : 723- 735. 被引量:1

共引文献46

同被引文献56

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部