期刊文献+

基于蚁群优化算法的精密伺服转台故障诊断方法 被引量:3

Ant Colony Optimization for Fault Diagnosis of High Precision Servo Simulator
下载PDF
导出
摘要 提出了一种基于蚁群优化算法的精密伺服转台故障诊断方法.根据现场观测建立了转台系统故障特征模式库.利用蚁群优化算法求解故障特征模式的最优分类问题,并定义敏感度和明确度来评价蚁群搜索到的诊断规则的分类性能,以减少故障特征信息中的冗余信息,使诊断规则得到约简.对某精密伺服转台的若干类故障诊断结果表明,该方法具有收敛速度快、鲁棒性强、诊断精度高和结果可靠等优点. A new fault diagnosis method for high precision servo simulator is presented in this paper. Based on the field observation, a fault feature pattern base is built up. The ant colony optimization (ACO) is used for the optimal classification problem of the fault feature patterns, in which an index function based on the sensitivity and the specificity is defined to evaluate the performance of the diagnostic rule obtained by ACO, in order to decrease the redundant information of the fault features so that the diagnosis rules can be reduced. Diagnosis results of several types of faults of a real high precision servo simulator show that the diagnosis method based on ACO is characterized by fast convergence speed, strong robustness, high diagnosis accuracy, and reliable results.
出处 《自动化学报》 EI CSCD 北大核心 2009年第6期780-784,共5页 Acta Automatica Sinica
基金 国家自然科学基金(60874037) 教育部博士点科研基金(200702870-50) 江苏省普通高校研究生科研创新计划(CX08B_091Z) 南京航空航天大学博士学位论文创新与创优基金(BCXJ08-06)资助~~
关键词 精密伺服转台 蚁群优化 故障诊断 数据挖掘 分类算法 High precision servo simulator, ant colony optimization (ACO), fault diagnosis, data mining, classification algorithm
  • 相关文献

参考文献13

  • 1Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy- a survey and some new results. Automatica, 1990, 26(3): 459-474 被引量:1
  • 2Saxena A, Saad A. Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Applied Soft Computing, 2007, 7(1): 441-454 被引量:1
  • 3Liang J, Du R. Model-based fault detection and diagnosis of HVAC systems using support vector machine method. International Journal of Refrigeration, 2007, 30(6): 1104-1114 被引量:1
  • 4Zhao C H, Zhuo X Z, Gao H L, Wu G. Knowledge mining for fault diagnosis based on rough sets theory. In: Proceedings of the International Conference on Fuzzy Systems. Hong Kong, China: IEEE, 2008. 744-749 被引量:1
  • 5Wang L, Niu Q, Fei M R. A novel quantum ant colony optimization algorithm and its application to fault diagnosis. Transactions of the Institute of Measurement and Control, 2008, 30(3-4): 313-329 被引量:1
  • 6郑小霞,钱锋.基于粗糙决策模型和蚁群算法的故障诊断[J].系统工程理论与实践,2007,27(3):140-144. 被引量:7
  • 7Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78 (1): 129-136 被引量:1
  • 8Lin L, Wang H J, Dai C L. Fault diagnosis for wireless sensor network's nodel based on Hamming neural network and rough set. In: Proceedings of the IEEE Conference on Robotics, Automation, and Mechatronics. Chengdu, China: IEEE, 2008. 566-570 被引量:1
  • 9Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29-41 被引量:1
  • 10Parpinelli R S, Lopes H S, Freitas A A. Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 321-332 被引量:1

二级参考文献14

  • 1覃方君,田蔚风,李安,卞鸿巍.基于蚁群算法的复杂系统多故障状态的决策[J].中国惯性技术学报,2004,12(4):12-15. 被引量:6
  • 2Ptak A,Foundy K.Real-time Spacecraft Simulation and Hardware-in-the-loop Testing.The Fourth IEEE Real-time Technology and Applications Symposium,Colorado,1998 被引量:1
  • 3Pawlak Zdzislaw. Rough Sets. International Journal of Computer and Information Sciences,1982,11(5):341~356 被引量:1
  • 4Pawlak Zdzislaw,Grzymala-Busse Jeray,Slowinski Roman,et al. Rough Sets.Communications of the ACM,1995,38(11):89~95 被引量:1
  • 5Pawlak Zdzislaw. Rough Classification. International Journal of Human Computer Studies,1999,51:369~383 被引量:1
  • 6张文修,吴伟志,梁吉业,等.粗糙集理论与方法. 北京:科学出版社,2001 被引量:1
  • 7Zdzislaw Pawlak. Rough Set Theory and Its Applications to Data Analysis. Cybernetics and Systems,1998,29(7):661~688 被引量:1
  • 8Pawlak Z W.Rough sets[J].International Journal of Information and Computer Science,1982,11(5):341-356. 被引量:1
  • 9Pawlak Z W.Rough Sets Theoretical Aspects of Reasoning about Data[M].Kluwer Academic Publishers,1991. 被引量:1
  • 10Quinlan J R.Induction of decision trees[J].Machine Learning,1986(4):81-106. 被引量:1

共引文献6

同被引文献20

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部