期刊文献+

面向对象的城市土地利用分类 被引量:9

Classification of Urban Land Use Based on Object-oriented Method
下载PDF
导出
摘要 利用面向对象的信息提取技术,以高分辨率的广州市QuckBird影像为例,将城市用地分为:居民地、水体、道路、林地和农业用地等5类,并将其与传统基于像素光谱信息的分类方法进行了比较。结果表明:视觉上,面向对象的分类方法克服了传统方法无法克服的"椒盐"噪声的影响;精度上,面向对象信息提取技术的总体精度高达89.53%,比传统方法提高了11%;并且各类地物信息的提取精度均有所提高,其中林地、道路的精度有了较大提高。 : In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of suburb of Guangzhou city, China using High-resolution satellite image, the QuickBird images. The image was classified into residential area, water, road, and forest and agriculture land by using supervised and unsupervised combined classification for the pixel-based approach and nearest neighbor (NN) method for the object-oriented approach. The classification outputs were assessed using overall accuracy and Kappa indices. The pixel- and object-based classification methods result in an overall accuracy of 78.53% and 89.53%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.73 and 0.87, respectively. The object-oriented method greatly lighten the noise influence, has higher classification accuracy and efficiency than that achieved by pixel-based method. Meanwhile, the classification result of object-oriented method is much easier to understand and explain.
出处 《地理空间信息》 2009年第3期62-65,共4页 Geospatial Information
基金 国家自然科学基金资助项目(40801182) 教育部科学技术研究基金资助项目(108162) 中国地质大学(武汉)优秀青年教师基金资助项目(CUGQNL0823)
关键词 高分辨率卫星影像 面向对象 基于像素 精度 high-resolution satellite image object-oriented pixel-based accuracy
  • 相关文献

参考文献10

二级参考文献39

  • 1周俊,晏非,孙曼.基于区域分割合并的建筑物半自动提取方法[J].海洋测绘,2005,25(1):58-60. 被引量:7
  • 2[1]Puissant A,Weber C.Les Potentialités des Images a Très Haute Résolution Spatiale pour la Reconnaissance des Composantes Urbaines[A]. Télédétection a très haute résolution spatiale et analyse d'image[C].Montpellier,1999. 被引量:1
  • 3[2]Haralick R.Statistical and Structural Approaches to Texture[J].Proceedings of the IEEE,1979,67(5):786~804 被引量:1
  • 4[3]Cocquerez J P,Philipp S.Analyse d'images: filtrage et segmentation[M].Masson,Paris,1995. 被引量:1
  • 5[4]Zhong Y.Optimisation of Building Detection in Satellite Images by Combining Multispectral Classification and Texture Filtering[J].ISPRS Journal of Photogrammetry & Remtoe Sensing,1999,54:50~60 被引量:1
  • 6Wilkinson G G.Recent Development in Remote Sensing Technology and the Importance of Computer Vision Analysis Techniques[A].Machine Vision and Advanced Image Processing in Remote Sensing[C].1999. 被引量:1
  • 7Blaschke T,Lang S,Lorup E,et al.Object-oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications[A].Cremers A,Greve K(Hrsg.).Umwelt Information for Planning,Politikund Offent Lichkeit[C].Environmental Information for Panning,Politics and the Public Metropolis Verlag,Marburg,2000,2:555-570. 被引量:1
  • 8Mauro C,Eufem ia T.Accuracy Assessment of Per-field Classification Integrating very Fine Spatial Resolution Satellite Imagery with Topographic Data[J].Journal of Geo spatial Engineering,2001,3(2):127-134. 被引量:1
  • 9Benz U C,Hofmann P,Illhauck W G,et al.Multi-resolution,Object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,58:239-258. 被引量:1
  • 10Lobo A,Chic O,Casterad A.Classification of Mediterranean Crops with Multi-sensor Data:Per-pixel Versus Per-object Statistics and Image Segmentation[J].International Journal of Remote Sensing,1996,17:2358-2400. 被引量:1

共引文献230

同被引文献127

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部