摘要
The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350 ℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis(EPMA), X-ray diffraction(XRD) analysis and selected area electron diffraction(SAED) pattern analysis of transmission electron microscopy(TEM). Partial isothermal section of Mg-Zn-Ce system in Mg-rich corner was identified. The results show that there is one ternary compound (T-phase) in Mg-Zn-Ce system. The T-phase is a linear ternary compound in which the content of Ce is about 7.7% (molar fraction); while the content of Zn is changed from 19.3% to 43.6% (molar fraction). The crystal structure of T-phase is C-centered orthorhombic. In addition, one two-phase region of Mg+T-phase and one three-phase region of Mg+T-phase+MgZn(Ce) exist in the Mg-rich corner of Mg-Zn-Ce system at 350 ℃.
The alloys were prepared in Mg-rich corner of Mg-Zn-Ce system. Partial phase equilibrium relationships of these alloys at 350℃ were identified by using scanning electron microscopy(SEM), electron probe microanalysis(EPMA), X-ray diffraction(XRD) analysis and selected area electron diffraction(SAED) pattern analysis of transmission electron microscopy(TEM). Partial isothermal section of Mg-Zn-Ce system in Mg-rich corner was identified. The results show that there is one ternary compound (T-phase) in Mg-Zn-Ce system. The T-phase is a linear ternary compound in which the content of Ce is about 7.7% (molar fraction); while the content of Zn is changed from 19.3% to 43.6% (molar fraction). The crystal structure of T-phase is C-centered orthorhombic. In addition, one two-phase region of Mg+T-phase and one three-phase region of Mg+T-phase+MgZn(Ce) exist in the Mg-rich corner of Mg-Zn-Ce system at 350 ℃.
出处
《中国有色金属学会会刊:英文版》
CSCD
2009年第3期681-685,共5页
Transactions of Nonferrous Metals Society of China
基金
Project(50471025) supported by the National Natural Science Foundation of China
Project(20052028) supported by the Natural Science Foundation of Liaoning Province, China
Project(2006BAE04B09-7) supported by the National Key Technology R&D Program during the 11th Five-Year Plan Period
关键词
镁锌铈
摩尔分数
晶体结构
T细胞
Mg-Zn-Ce system
phase equilibrium
two-phase region
three-phase region
T-phase