期刊文献+

三阶非线性微分方程组边值问题的正解

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS OF NONLINEAR THIRD ORDER DIFFERENTIAL SYSTEM
下载PDF
导出
摘要 讨论了以下三阶非线性微分方程组{-u′′′(x)=f(x,v),-v′′′(x)=g(x,u),x (0,1),u(0)=0,αu′(0)-βu″(0)=0,γu′(1)+δu″(1)=0,v(0)=0,αv′(0)-βv″(0)=0,γv′(1)+δv″(1)=0.在假设条件下,利用锥拉伸与锥压缩不动点定理获得了上述方程组正解的存在性. The folllowing boundary value problem of the nonlinear third - order differential system is investigated: {=μ′″(x)=f(x,v), =v′″(x)=g(x,μ),x∈(0,1), μ(0)=0,αμ′(0)-βμ″(0)=0,γμ′(1)+δμ″(1)=0, v(0)=0,αv′(0)-βv″(0)=0,γv′(1)+δv″(1)=0.Under some suitable conditions, the existence and multiplicity of positive solutions are established by cone expansion and compression theorems in norm type.
作者 屈海东 刘轩
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2009年第2期16-19,共4页 Journal of South China Normal University(Natural Science Edition)
关键词 边值问题 正解 格林函数 三阶非线性微分方程组 boundary value problem positive solution Green's function nonlinear third order differential system
  • 相关文献

参考文献9

  • 1YAO Q,FENG Y.The existence of solution for a third-order two-point boundary value problem[J].Appl Math Lett,2002,15:227-232. 被引量:1
  • 2GUO D J,LAKSHMIKANTHAM V.Nonlinear problems in abstract cones[M].San Diego:Academic Press,1988. 被引量:1
  • 3LI S.Positive solutions of nonlinear single third-order two-point boundary value problem[J].J Math Anal Appl,2006,323:413-425. 被引量:1
  • 4ERBE L H,WANG H Y.On the existence of positive solutions of ordinary differential equations[J].Proc Amer Math Soc,1994,120:743-748. 被引量:1
  • 5WANG H Y.On the existence of positive solutions for semilinear elliptic equations in the annulus[J].J Differ Equ,1994,109:1-7. 被引量:1
  • 6翁佩萱.四阶泛函微分方程边值问题的上下解方法[J].华南师范大学学报(自然科学版),2000,32(3):1-6. 被引量:7
  • 7MOUSTAFA El-Shahed.Posotive solutions for nonlinear singular third order boundary value problem[J].Communications in Nonlinear Science and Numerical Simulation,2009,14:424-429. 被引量:1
  • 8HU L,WANG L L.Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations[J].J Math Anal Appl,2007,335:1052-1060. 被引量:1
  • 9郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2003. 被引量:14

二级参考文献1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部