期刊文献+

利用压电力显微镜研究PMN-30%PT单晶体中铁电畴的结构及其演变(英文)

STUDY OF FERROELECTRIC DOMAIN STRUCTURE AND EVOLUTION IN PMN-30%PT SINGLE CRYSTALS BY MEANS OF PIEZORESPONSE FORCE MICROSCOPY
下载PDF
导出
摘要 本文总结了我们近年来利用压电力显微镜(PFM)研究PMN 30%PT单晶体中铁电畴的结构及其演变的结果。选择PMN-30%PT晶体是因为该组分在超声传感器等应用方面具有最大的潜力。铁电畴的观察是基于反压电现象;具体来讲就是当交变电场通过原子力显微镜探针加到晶体表面时,会引起晶体表面的起伏振荡,而锁相放大器可以解出该振荡信号的振幅和相位角;其中振幅衬度反映了压电系数d_(33)的大小,而相位衬度则反映了铁电畴的极化方向。文中介绍了平面内以及垂直平面的PFM成像技术,并演示了影响畴的图像的一些因素,其中包括静电荷效应,表层效应和机械抛光的影响。本文还利用有限元模型对PFM成像原理进行了模拟分析。着重研究了晶体中铁电畴的尺寸分布,畴与晶体取向,时间和温度的相关性,以及畴的演变过程。 In this paper we review our recent research in the study of domain configuration and evolution in PMN-xPT single crystal by means of piezoresponse-force-microscopy (PFM). In particular, we focus on the PMN-30%PT single crystal since this PT content possesses the highest application potential in ultrasound transducers etc. The method to observe the ferroelectric domain structure is based on the reversed piezoelectric effect; while the electric field is applied through a conductive atomic force microscope (AFM) tip and the crystal surface oscillation is measured by AFM using a lock-in amplifier technique where the resolved amplitude reflects the magnitude of d33 and the phase contrast represents the ferroelectric domain orientation. The techniques of in-plane polarization and out-of-plane polarization PFM are introduced, and some effects to the domain imaging, such as static charge effect, skin effect and mechanical polishing effect, are illustrated. Domain-size distribution, crystal-orientation-dependent, time-dependent and temperature-dependent domain evolutions in the crystal are studied.
出处 《物理学进展》 CSCD 北大核心 2009年第2期197-214,共18页 Progress In Physics
基金 supported by theHong Kong Polytechnic University Internal Grant:G-YE74.
关键词 PMN-30%PT单晶体 铁电畴 压电力显微镜 PMN-PT single crystal ferroelectric domain piezo-response force microscopy
  • 相关文献

参考文献22

  • 1Zhao X Y. PhD. Thesis, 2004 被引量:1
  • 2Boulesteix C, Varnier F, Llebaria A, Husson E. Journal of Solid State Chemistry, 1994, 108 (1) : 141-147 被引量:1
  • 3Yoshida M, Mori S, Yamarnoto N, Uesu Y, Kiat J M. Journal of the Korean Physical Society, 1998, 32:S993-S995 被引量:1
  • 4Westphal V, Kleemann W, Glinchuk M D. Physical Review Letters, 1992, 68(6): 847-850 被引量:1
  • 5Vakhrushev S, Nabereznov A, Sinha S K, Feng Y P, Egami T. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1517-1523 被引量:1
  • 6Naberezhnov A, Vakhrushev S, Dorner B, Strauch D, Moudden H. European Physical Journal B, 1999,11 (1) 13-20 被引量:1
  • 7Hirota K, Ye Z G, Wakimoto S, Gehring P M, Shirane G. Physical Review B, 2002, 65 (10): 104105 被引量:1
  • 8Gehring P M, Wakimoto S, Ye Z G, Shirane G. Physical Review Letters, 2001, 87(27) : 277601 被引量:1
  • 9Xu G Y, Hiraka H, Shirane G, Ohwada K. Applied Physics Letters, 2004, 84(20): 3975-3977 被引量:1
  • 10Yu H F, Zeng H R, Wang H X, Li G R, Luo H S, Yin Q R. Solid State Communications, 2005, 133: 311-314 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部