摘要
给出一类三阶收敛的牛顿变形方法.证明了该方法的收敛性(它们至少3阶收敛到单根),给出数值试验,且与牛顿法及牛顿类方法做了比较,结果表明该方法具有一定的优越性.
A class of third-order convergence methods, which are variant's of Newton's method, is given. Their convergence properties are proved. They are at least third-order convergence near simple root. Further more, the numerical tests are given and compared with Newton's method and Newton-like methods. The results show that the proposed methods have some advantages.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2009年第2期111-112,119,共3页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
国家自然科学基金项目(10701066)
河南省教育厅自然科学基金项目(2008A110022)
关键词
牛顿迭代法
收敛阶
数值试验
Newton's iteration method
convergence order
numerical test