期刊文献+

一种用于汽车发动机故障诊断的贝叶斯网络模型 被引量:5

Bayesian Network Model for Motor Fault Diagnosis
下载PDF
导出
摘要 在汽车发动机故障诊断领域,由于设备内部的复杂性和导致故障的不确定因素,使得解决不确定性问题成为目前发动机故障诊断的首要问题;文章提出了一种用于解决不确定性问题的贝叶斯网络模型,该模型的网络结构学习采用了基于簇的搜索算法;为了获得更高准确率的故障诊断结果,模型加入了对当前信息集的采用,进行结构和参数的在线学习,改进了网络结构,网络通过概率传播算法,推理出产生故障的原因节点;在实例中表明,该模型能准确有效地解决发动机故障诊断中存在的不确定性问题,并与专家系统故障诊断模型做出比较,验证了基于该算法的贝叶斯网络模型在信息不确定性条件下能够提高诊断的准确率。 In motor fault diagnosis fields, because of the complexity of the equipment and the uncertain factor of fault causation, the most important problem of solving motor fault diagnosis is to solve the uncertain problem. The paper contrives a Bayesian network model for solving the aneertain problem, and this network model adopts a search arithmetic based on clusters. In order to get more exact diagnosis result, this model proposes an on-line structure and parameter learning by using current information, which improves the network structure. Through the probability spread algorithm, the Bayesian network can obtain the causation nodes that lead fault. The example makes know that this model can solve the uncertain problem on motor fault diagnosis availably and exactly. Compared with the expert system fault diagnosis, confirms this Bayesian network model based on the paper's algorithm can improve the veracity on uncertain information.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第5期830-832,856,共4页 Computer Measurement &Control
关键词 发动机故障诊断 贝叶斯网络 不确定性推理 motor fault diagnosis Bayesian network uncertainty reasoning cluster
  • 相关文献

参考文献6

二级参考文献12

  • 1王安丽,史志富,张安.基于熵的空中目标识别模型及应用[J].火力与指挥控制,2005,30(2):110-112. 被引量:18
  • 2吴金培,肖建华.智能故障诊断与专家系统[M].北京:科学出版社,1997. 被引量:12
  • 3Zhang Yongmian, Ji Qiang, G. Looney Carl. Active Information Fusion For Decision Making Under Uncertainty [C] Information Fusion ,2002.Proceedings of the fifth International Conference,,643-650. 被引量:1
  • 4Chang Kou-Chu, Liu Jun, Zhou Jing. Bayesian Probability Inference for Target Reeognition[J]. SPIE,2755:158-165. 被引量:1
  • 5Okello N, Thorns G. Threat assessment using bayesian networks. Information Fusion[C]. 2003. Proceedings of the Sixth International Conference, 1102-1109. 被引量:1
  • 6史志富,何胜强,张安.基于物元分析的空中目标识别研究[c].火力与指挥控制2004年学术年会,2004,10. 被引量:2
  • 7Liu J ,Chang K C,Zhou J. Learning Bayesian Networks with a Hybrid Convergent Method[J]. IEEE Trans on Systems Man and Cybernetics(Part A), 1999,29(5) :436-449. 被引量:1
  • 8Pear J. Fusion,Propagation and Structuring in Belief Networks[J]. Artificial Intelligence,1986,29(3):241-288. 被引量:1
  • 9Pearl J ,Graphical Models for Probabilistie and Causal Reasoning[M]. The Computer Science and Enginerring Handbook,Kluswer Academic Publishers, 1997: 697-714. 被引量:1
  • 10Larsson J E.Diagnosis based on explicit means-end models[J].Artificial Intelligence,1996,80 (1):29-93. 被引量:1

共引文献48

同被引文献39

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部