期刊文献+

基于神经网络和D-S证据理论的汽车电控系统故障诊断方法研究 被引量:2

Fault Diagnosis Method of Automobile Electrical Controlled System Based on Artificial Neural Network(ANN) and D-S Evidence Theory
下载PDF
导出
摘要 鉴于目前广泛使用的OBDII标准的车载自诊断系统的诊断精度和准确度都有待于进一步的提高,以电控发动机怠速不稳征兆为例,可提出一种将神经网络和D-S证据理论融合的多传感器故障诊断方法,并用于车载自诊断系统诊断数据的融合处理和分析。实验结果表明,该方法能够充分利用各种故障的冗余和互补信息,从而显著提高故障的识别能力。 The precision and accuracy of on-board diagnosis system with OBDII standard which has been widely used at present need to be further improved. In this context, taking the engine idling instability as example, a multi-sensor diagnosis method integrating neural network and D-S evi-dence theory, which is mainly used in on-board forward. The experimental result shows that this and complementation information sufficiently, and diagnosis system's data process and analysis, is put method can make use of various then promote the recognition ability fault' s redundant obviously.
出处 《交通标准化》 2009年第11期47-51,共5页 Communications Standardization
关键词 神经网络 证据理论 融合 自诊断 ANN evidence theory fusing on-board diagnosis
  • 相关文献

参考文献4

二级参考文献34

共引文献131

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部