期刊文献+

基于进化策略的非线性方程组求解 被引量:3

Solve nonlinear equation groups based on evolution strategies
下载PDF
导出
摘要 基于在求解非线性方程组过程中传统算法存在着对于初始点敏感和串行运行速度过慢的问题,提出一种求解非线性方程组的进化策略算法。该算法充分发挥了进化策略的群体搜索和全局收敛的特性,能够快速求得非线性方程组的根,有效地克服了经典算法的初始点敏感和速度过慢的问题。仿真计算表明,该算法比传统的经典算法、改进的遗传算法和神经网络算法具有更高的求解质量和求解效率,为求解非线性方程组提供了一条比较有效的途径。 Evolution strategies algorithm to solve nonlinear equation groups is presented, according to the question that traditional algorithm has sensitivity to initial point and too slow velocity by serial operation. The algorithm sufficiently exerted the advantage of ES such as group search and global convergence, which can quickly find the roots of the nonlinear equations. It can efficiently overcome the problem of high sensitivity to initial point and too slow velocity. Results of the simulation indicated the evolution strategies algorithm had better efficiency and optimization performance than traditional classical algorithms, improved genetic algorithm and neural network algorithm, which offers an effective way to solve the nonlinear equations from another viewpoint.
作者 张明 周永权
出处 《计算机工程与设计》 CSCD 北大核心 2009年第11期2634-2636,共3页 Computer Engineering and Design
关键词 非线性方程组 进化策略 全局收敛 突变 标准差 nonlinear equations evolution strategies global convergence mutation standard deviation
  • 相关文献

参考文献9

二级参考文献15

  • 1任传波,于万明,云大真.求解超定线性方程组及其相关问题的神经网络算法[J].大连理工大学学报,1996,36(4):419-423. 被引量:6
  • 2David A Cox,John B Little,Donald B, et al Using Algebric Geometry[M]. New York: Springer Verlag Inc, 1998. 被引量:1
  • 3David A Cox,John B Little, Donald B, et al Ideals, Varieties and Algorithm[M]. New York: Springer Verlag Inc, 1992. 被引量:1
  • 4Wang D K Zero Decomposition Algorithms for System of Polynomial Equations[Z]. MM Research Prepints, Beijing: MMRC, AMSS, Academia Sinica, 1999,(18) 200-207. 被引量:1
  • 5Chionh E W,Zhang M,Goldman R N. Fast Computation of the Bezout and Dixon Resultant Matrices[J]. J Symbolic Computation,2002, 33: 13-29. 被引量:1
  • 6Arnon D S,Collins G E. Cylindrical Algerbraic Decomposition I: The Basic Algorithm[J]. SIAM J Comput, 1983,13(4) 被引量:1
  • 7Moore R E,Yang C T. Interval Analysis I[Z]. Technical Document LMSD-285875 , 1959. 被引量:1
  • 8Caprani O Madsen K,Nielsen H B. Introduction to Interval Analysis[EB/OL]. http://www.itum.dtu.dk 被引量:1
  • 9Hentenryck P Van,McAllester D,Kapur D. Solving Polynomial Systems Using a Branch and Prune Approach[J], SIAM Journal on Numerical Analysis,1997, 34(2) 797-927. 被引量:1
  • 10Herbort S,Ratz D. Improving the Effciencicy of Non linear System Solver Using a Componentwise Newton Method[EB/OL] http://citeseer.nj.nec.com/herbort97improving.html,1997. 被引量:1

共引文献42

同被引文献15

  • 1李耀辉,刘保军.非线性代数方程组实根求解研究现状综述[J].武汉科技大学学报,2004,27(3):326-330. 被引量:8
  • 2精通Matlab[M].北京:电子工业出版社,2008. 被引量:2
  • 3黄像鼎,曾钟钢,马亚南.非线性数值分析[M].武汉:武汉大学出版社,2000. 被引量:4
  • 4Brett W Bader.Tensor-Krylov methods for solving large-scale systems of nonlinear equations[J].SIAM J Numerical Analysis,2005,43(3):1321-1347. 被引量:1
  • 5Crina Grosan,Ajith Abraham.A new approach for solving nonlinear equations systems[J].IEEE Transactions on systems,may 2008,38(3):698-714. 被引量:1
  • 6Krishnanand K N,Ghose D.Detection of multiple source locations using a glowworm metaphor with applications to collective robotics[C]//IEEE Swarm Intelligence Symposium,USA,June 2005,84-91. 被引量:1
  • 7Krishnanand K N,Ghose D.Glowworm swarm optimisation:a new method for optimising multimodal functions[J].International Journal of Computational Intelligence Studies,2009,1(1):93-119. 被引量:1
  • 8Yan Yang,Yongquan Zhou,Qiaoqiao Gong.Hybrid artificial glowworm swarm optimization algorithm for solving system of nonlinear equations[J].Journal of Computational Information Systems,2010,6(6):3431-3438. 被引量:1
  • 9Guangwei Zhao,Yongquan Zhou,Yingju Wang.Use the complex method guidance GSO swarm algorithm for solving high dimensional function optimization problem[J].Journal of Convergence Information Technology,2011,6(11):352-359. 被引量:1
  • 10姜浩,韩亚利,成礼智.基于区间—遗传算法求解非线性方程组[J].计算机工程与应用,2009,45(25):62-64. 被引量:6

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部