期刊文献+

基于图的频繁子结构挖掘算法综述 被引量:2

Review of graph-based frequent substructure mining algorithm
下载PDF
导出
摘要 随着对大量结构化数据分析需求的增长,从图集合中挖掘频繁子图模式已经成为数据挖掘领域的研究热点。通过对目前有代表性的频繁子图挖掘算法的分析和比较,全面总结了各算法的特性及优缺点,并预测了今后的发展趋势。 With the increasing demand of massive structured data analysis, mining frequent subgraph patterns from graph datasets has been an attention-deserving field.This paper fully summarizes the characteristic and the advantages and disadvantages of these algorithms by analysis and comparison of popular frequent subgraph mining algorithm at present, and points out the future development trend.
出处 《信息化纵横》 2009年第10期5-9,共5页
基金 十一五"国家科技支撑课题"基于认知的名老中医学术思想临床经验挖掘技术研究
关键词 数据挖掘 频繁子结构 子图同构 data mining frequent substructure subgraph isomorphism
  • 相关文献

参考文献8

  • 1INOKUCHI A, WASHIO T, MMOTODA H.An apriori-based algorithm for mining frequent substructures from graph data.In Proc. 2000 European Symp.Principle of Data Mining and Knowledge Diseovery(PKDD'00), Lyon, France, 1998(9):13-33. 被引量:1
  • 2KURAMOCHI M, KARYPIS G.Frequent subgraphs discovery.In Proc.2001 Int.Conf.Data Mining(ICDM' 01), San Jose, CA, 2001 (11) : 313-320. 被引量:1
  • 3VANETIK N, GUDES E, SHIMONY S.E.Computing frequent graph patterns from semistructured data.In Proc.2002 Int.Conf.on Data Mining(ICDM ' 02), Maebashi, Japan, 2002(10) : 458-465. 被引量:1
  • 4Han J,Kamber M.数据挖掘概念与技术[M].范明,译.北京:机械工业出版社,2007:32-59. 被引量:26
  • 5YAN X.HAN J.gSpan: Graph-based substructure pattern mining.In Proc.2002 Int.Conf.Data Mining(ICDM' 02), Maebashi, Japan, 2002(10) : 721-724. 被引量:1
  • 6YAN X, HAN J.Closegraph: mining closed frequent graph patterns. In KDD, 2003 : 286-295. 被引量:1
  • 7HUAN J, WANG W, PRINS J.Efficient mining of frequent subgraphs in the presence of isomorphism.In ICDM, 2003:549-552. 被引量:1
  • 8KETKAR S, HOLDER B, COOK J.Subdue : Compression-Based Frequent Pattern Discovery.In ACM, 2005 : 71-76. 被引量:1

共引文献25

同被引文献20

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部