期刊文献+

基于PSO-MKSVM发酵过程建模与补料优化控制 被引量:1

Modeling of Fermentation Process and Optimization Control of Material Makeup Based on PSO-MKSVM
下载PDF
导出
摘要 针对动态非线性、时变发酵过程,采用混合核支持向量机的智能模型建模方法,通过建立混合核支持向量机的状态预估模型,实现对发酵产物浓度的预估,解决了缺乏生物传感器的问题。在此基础上,再利用粒子群优化算法求取补料速率优化曲线,最终使得发酵终止时产物产量最高。实验结果表明,该方法取得了良好的效果。 In according to the features of non-liner and time varying for the ferment process, using a intelligent modeling method of mixture kernels SVM, by the establishment of MKSVM model, the concentration of fermentation product can be estimated, it also solve the problem of lacking bio-sensor. Based on this model, particle swarm optimization(PSO) is applied to seek the optimal curve of material makeup rate, eventually making the product of fermentation production to the highest. Experimental results show that the method achieved good results.
出处 《自动化与仪表》 北大核心 2009年第5期23-27,共5页 Automation & Instrumentation
基金 国家863计划项目(2006AA020301)
关键词 支持向量机 粒子群算法 发酵建模 补料 support vector machine(SVM) particle swarm optimization(PSO) modeling of fermentation material making-up
  • 相关文献

参考文献5

二级参考文献13

  • 1莫愿斌,陈德钊,刘贺同,胡上序.粒子群算法求解边值固定的化工动态过程优化问题[J].化工自动化及仪表,2006,33(4):18-21. 被引量:4
  • 2高智芳,张新家.基于小波变换的除噪方法及其应用研究[J].信息安全与通信保密,2007,29(6):102-104. 被引量:16
  • 3Hao J B.Predictive control of nonliear systems based on identification by backpropagation networks[J].Int J neural Systems,1994,5(4):335-344 被引量:1
  • 4Hong T,J Zhang,A J Morris et al .Neural based predictive control of multivariable microalgae fermentation[C].In:Proc of IEEE Conf on SMC,Beijing,1996:345-350 被引量:1
  • 5李士勇.模糊控制[A]..神经控制与智能控制论[C].哈尔滨:哈尔滨工业大学出版社,1996.. 被引量:6
  • 6VAPNIK V N.The Nature of Statistical Learning Theory[M].New York:Soinger Verlng,1995. 被引量:1
  • 7ZHANG Sheng,LIU Jian,TIAN Jin-wen.An SVM-based Small Target Segmentation and Clustering Approach[C]//Proceedings of the Third International Conference on Machine Learning and Cvbernetics.Shanghai:IEEE,2004,6(8):3318-3323. 被引量:1
  • 8SMlTS G F,JOBDAAN E M.Improved SVM Regression Using Mixtures of Kernels[C]//Proceedings of the 2002 International Joint Conference on Neural Networks.Hawaii:IEEE,2002,3(2):2785-2790. 被引量:1
  • 9RIBEIRO B.Kernelized Based Functions with Minkovsky's Norm for SVM Regression[C]//Proceedings of the 2002 International Joint Conference on Neural Networks.IEEE,2002,3(2):2198-2203. 被引量:1
  • 10LEE B H,KIM S U,SEOK JW,et al.Nonlinear System ldentification Based on Support Vector Machine Using Particle Swarm Optimization[C]//Proceedings of the 2006 International Joint Conference on Neural Networks.Bexco,Busan,Korea:IEEE,2006:5614-5618. 被引量:1

共引文献12

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部