期刊文献+

子矩阵约束下的双中心矩阵反问题及其最佳逼近 被引量:1

Inverse Problem of Doubly Center Matrices under Submatrix Constraint and Its Optimal Approximation
下载PDF
导出
摘要 利用矩阵的奇异值分解及标准相关分解,建立子矩阵约束下双中心矩阵反问题解存在的充分必要条件,并给出了通解的表达式.进而得到了对任一给定矩阵的最佳逼近. Using the singular value decomposition (SVD) of a matrix and the canonical correction decomposition (CCD) of matrices, this paper establishes the necessary and sufficient conditions for the existence of the doubly center solutions and presents the expressions for the inverse problem of a matrix under a submatrix constraint. Moreover, the optimal approximation problem to a given matrix in the solution set is considered, and the optimal approximation solution is obtained.
作者 周硕 郭丽杰
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第3期510-514,共5页 Journal of Jilin University:Science Edition
基金 吉林省科技发展计划项目基金(批准号:20030106)
关键词 子矩阵约束 双中心矩阵 反问题 最佳逼近 标准相关分解 submatrix constraint doubly center matrices inverse problem optimal approximation canonical correction decomposition
  • 相关文献

参考文献9

  • 1Gladwell G M L.Inverse Problems in Vibration[M].Dordrecht:Kluwer Academic Publishers,1986. 被引量:1
  • 2Joseph K T.Inverse Eigenvalue Problem in Structural Design[J].AIAA Journal,1992,30(10):2890-2896. 被引量:1
  • 3Friedland S.The Reconstruction of a Symmetric Matrix from the Spectral Data[J].Journal of Mathematical Analysis and Applications,1979,71:412-422. 被引量:1
  • 4DAI Hua,Lancaster P.Linear Matrix Equation from an Inverse Problem of Vibration Theory[J].Linear Algebra and Its Applications,1996,246:31-47. 被引量:1
  • 5Jameson A,Kreindler E,Lancaster P.Symmetric Positive Semidefinite,and Positive Definite Real Solutions of AX=XAT and AX=YB[J].Linear Algebra and Its Applications,1992,160:189-215. 被引量:1
  • 6LI Luo-luo.Sufficient Conditions for the Solvability of Algebraic Inverse Eigenvalue Problem[J].Linear Algebra and Its Applications,1995,221:117-129. 被引量:1
  • 7周树荃,戴华编著..代数特征值反问题[M].郑州:河南科学技术出版社,1991:411.
  • 8周硕,吴柏生.双中心矩阵反问题及其在电网络理论中的应用[J].工程数学学报,2007,24(4):611-617. 被引量:5
  • 9Golub G H,ZHA Hong-yuan.Perturbation Analysis of the Canonical Correlations of Matrix Pairs[J].Linear Algebra and Its Applications,1994,210:3-28. 被引量:1

二级参考文献6

共引文献4

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部