摘要
研究一类具脉冲时滞的非线性双曲型向量泛函微分方程解的H-振动性.方法是采用由Domslak引进的H-振动性的概念,将向量微分方程解的振动问题转化为纯量微分不等式正解和负解的不存在性问题.得到了解的H-振动性的若干判别准则.
Nonlinear impulsive vector hyperbolic differential equations are studied and the H-oscillations of solutions are investigated. Our approach is to reduce the oscillation problems to the nonexistence of positive and negative solutions of scalar differential inequalities by employing the concept of H-oscillation introduced by Domslak'. Several H-oscillation criteria are obtained.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第9期225-230,共6页
Mathematics in Practice and Theory
基金
湖北省教育厅自然科学基金(Q200713001)
关键词
H-振动性
向量微分方程
双曲型
脉冲
H-oscillation
Vector differential equations
Hyperbolic type
Impulse