期刊文献+

SA:一种有利于多属性范围查询的多维聚簇方法 被引量:1

SA: A New Multidimensional Clustering Method to Facilitate Range Queries on Multiple Attributes
下载PDF
导出
摘要 一般来说,外存访问的数据文件中针对多属性的区域查询有两个改进其效率的方向。一个是在其上建立索引,另一个是在物理层按照某种规律重新安排记录。探讨如何通过第二种方法来提高范围查询的效率,即通过多维聚簇的方式得到数据文件中更好的记录的存储顺序。首先,细致分析了该问题,并针对该问题构造了一个数学模型,然后通过引入光谱算法(SA)的思想为解决该NP难问题提供了一种多项式时间内的近似解。最后通过实验来验证了该方法在矩形区域查询和单维范围查询方面的有效性。 Generally there are two directions to improve the query performance of range queries on multiple attributes in a static data file. One is to devise an index, and the other is to rearrange records in physical layer. In this paper, we took the second way to give a better data file organization, which we call multidimensional clustering. First we analyzed the problem, and constructed a mathematical model for this it, and then based on the idea of Spectrum Algorithm (SA), we devised a polynomial method to heuristically solve this NP-hard problem. And the experiment results show that the spectrum algorithm is an effective record reorganization method for range queries.
出处 《计算机科学》 CSCD 北大核心 2009年第6期133-137,共5页 Computer Science
基金 国家自然科学基金(60673135 60373081)重点项目(60736020) 教育部新世纪优秀人才支持计划(NCET-04-0805) 广东省自然科学基金(7003721)资助
关键词 高维聚簇 数据重组 范围查询 光谱算法 Multidimensional clustering, Data reorganization, Range query,Spectrum algorithm
  • 相关文献

参考文献18

  • 1Nianlong Y. Reducing application load time by rearranging disk data[D]. Brigham Young University,Provo, UT, 1998 被引量:1
  • 2Omiecinski E, Scheuermann P. A global approach to record clustering and file reorganization[R]. Northwestern University, Evanston, IL, 1983 被引量:1
  • 3Jong - Hak L, Young- Koo L, Kyu - Young W, et al. A region splitting strategy for physical database design of multidimensional file organizations[C]//Proceedings of the 23rd International Conference on Very Large Data Bases, August 1997:416-425 被引量:1
  • 4Lee J H, et al. A physcal database design method for multidimensional file organizations [R]. CS/TR-96-104. Korea Advanced Institute of Science and Technology, 1996 被引量:1
  • 5Sam S L,Bishwaranjan B. Automated design of multidimensional clustering tables for relational databases[C] // Proceedings of the 30th VLDB Conference. Toronto, Canada, 2004 被引量:1
  • 6Padmanabhan S, Bhattacharjee B, Malkemus T, et al. Multi-dimensional clustering: A new data layout scheme in DB2 [C]// SIGMOD2003. San Diego, USA, 2003 被引量:1
  • 7Yu C T, Suen Cheing-mei, Lam K,et al. Adaptive record clustering[J]. ACM Transactions on Database Systems (TODS), 1993,10(2):180-204 被引量:1
  • 8Chang J, Fu K. Extended K-d tree database organization: A dynamic multiattribute clustering method[J] IEEE Softw. Eng. , 1981: 284-290 被引量:1
  • 9Robinson J T. The K-D-B-tree: a search structure for large multidimensional dynamic indexes[C] //Proceedings of the 1981 ACM SIGMOD International Conference on Management of Data. Ann Arbor, Michigan, April 29-May 01, 1981 被引量:1
  • 10George A,Pothen A. An analysis of spectral envelope-reduction via quadratic assignment problems[J]. SIAM J. Matrix Anal. Appl., 1997,18: 706-732 被引量:1

同被引文献4

  • 1Lee Jong-Hak, Lee Young-Koo, Whang Kyu-Young, et al. A Region Splitting Strategy for Physical Database Design of Multidimensional File Organizations[C]//Proc. of the 23rd Int’l Conf. on Very Large Data Bases. Athens, Greece: [s. n.], 1997. 被引量:1
  • 2Sam S. Automated Design of Multidimensional Clustering Tables for Relational Databases[C]//Proc. of the 30th Int’l Conf. on Very Large Data Bases. Toronto, Canada: [s. n.], 2004. 被引量:1
  • 3Sriram P, Bishwaranjan B, Tim M, et al. Multi-dimensional Clustering: A New Data Layout Scheme in DB2[C]//Proc. of the 2003 ACM SIGMOD Int’l Conf. on Management of Data. San Diego, USA: [s. n.], 2003. 被引量:1
  • 4刘润涛,安晓华,高晓爽.一种基于R-树的空间索引结构[J].计算机工程,2009,35(23):32-34. 被引量:10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部