期刊文献+

非定常对流扩散方程的局部和并行有限元算法 被引量:2

Local and Parallel Finite Element Algorithms for the Time-Dependent Convection-Diffusion Equations
下载PDF
导出
摘要 对基于两重网格的非定常对流扩散方程的局部和并行有限元算法进行了研究.算法的理论依据是两重网格的思想,解的低频分量可以用一个整体的粗网格空间来逼近,高频分量可以用局部和并行的细网格空间来逼近.因此,这种局部和并行算法仅仅涉及一个粗网格上的整体逼近和细网格上的局部校正.得到了算法的误差估计,一些数值例子验证了算法的有效性. Local and parallel finite element algorithms based on two-grid discretization for the timedependent convection-diffusion equations are presented. These algorithms are motivated by the observation that for a solution to the convection-diffusion problems, low frequency components can be approximated well by a relatively coarse grid and high frequency components can be computed on a fine grid by some local and parallel procedure. Hence, these local and parallel algorithms only involve one small original problem on coarse mesh and some correction problems on local fine grid. One technical tool for the analysis is some local a priori estimates that are also obtained. Finally, some numerical examples are given to support our theoretical analysis.
出处 《应用数学和力学》 CSCD 北大核心 2009年第6期733-740,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10871156) 新世纪优秀人才支持计划资助项目(NCET-06-0829)
关键词 局部和并行算法 有限元法 对流扩散方程 local and parallel algorithm finite dement method convection-diffusion equation
  • 相关文献

参考文献2

二级参考文献27

  • 1R. Adams, Sobole Spaces, Academic Press Inc., 1975. 被引量:1
  • 2D.N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo,21 (1984), 337-344. 被引量:1
  • 3D.N. Arnold and X. Liu, Local error estimates for finite element discretizations of the Stokes equations, RAIRO M^2AN, 29 (1995), 367-389. 被引量:1
  • 4P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Vol.II, Finite Element Methods(Part I), Elsevier Science Publisher, 1991. 被引量:1
  • 5V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-stokes equations,Springer-Verlag, Berlin, Heidelberg New York, 1981. 被引量:1
  • 6Y. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the timedependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285. 被引量:1
  • 7Y. He, J. Xu and A. Zhou, Local and parallel finite element algorithms for the Stokes problem,submitted. 被引量:1
  • 8O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, New York,1969. 被引量:1
  • 9W. Layton, A two level discretization method for the Navier-Stokes equations, Comput. Math.Appl., 26 (1993), 33-38. 被引量:1
  • 10W. Layton and W. Lenferink, Two-level Picard, defect correction for the Navier-Stokes equations,Appl. Math. Comput., 80 (1995), 1-12. 被引量:1

共引文献19

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部