期刊文献+

基于自适应免疫进化算法的逻辑电路设计 被引量:2

Immune-based adaptive evolutionary algorithm for logic circuit design
下载PDF
导出
摘要 针对现有进化算法在进行逻辑电路设计时存在的进化缓慢和容易陷入局部解等问题,提出一种自适应免疫进化算法(adaptive immune evolutionary algorithm,AIEA)。该算法引入了免疫记忆机制和抗体差异调节算子,能够很好地保证个体的多样性,有利于跳出局部最优解;通过采用自适应交叉率和变异率,提高了算法的搜索能力和收敛速度。通过与多目标进化算法(MOEA)、简单免疫算法(SIA)的实验比较,证明了该自适应免疫进化算法的有效性。 To solve the problems of traditional evolution algorithm, such as slowness evolution speed and premature convergence, this paper presened an adaptive immune evolutionary algorithm (AIEA) for combinational logic circuit design. The AIEA draws into the mechanisms existing in biological immune system such as immune memory, immune regulation, and antibody diversity. Besides, the AIEA featured an adaptation strategy that enabled crossover probability and mutation probability to vary with genetic-search process. The results were compared with those produced by the multi-objective evolutionary algorithm (MOEA) and by the simple immune algorithm (SIA). The simulation results show that AIEA overcomes the disadvantages of premature convergence, and improve the global searching efficiency and capability.
出处 《计算机应用研究》 CSCD 北大核心 2009年第6期2276-2278,共3页 Application Research of Computers
基金 国家自然科学基金重点资助项目(60534020) 国家教育部科技创新工程重大项目培育资金项目(706024) 上海市国际科技合作基金项目(061307041) 上海市人才发展资金项目 上海市领军人才后备人选专项资金项目
关键词 进化算法 逻辑电路设计 免疫进化算法 自适应 evolutionary algorithm logic circuit design immune evolutionary algorithm adaptive
  • 相关文献

参考文献8

  • 1赵曙光,刘贵喜,杨万海.可进化硬件的基本原理与关键技术[J].系统工程与电子技术,2002,24(1):70-73. 被引量:16
  • 2LIU Rui, ZENG Sang-you. An efficient multi-objective evolutionary algorithm for combinational circuit design [ C ]//Proc of the 1st NASA/ESA Conference on Adaptive Hardware and Systems. 2006: 215- 221. 被引量:1
  • 3NEDJAH N, De MOURELLE L M. A comparison of two circuit representations for evolutionary digital circuit design [ J ]. IEA/AIE, 2004,3029:594- 604. 被引量:1
  • 4Dai Yongshou,Li Yuanyuan,Wei Lei,Wang Junling,Zheng Deling.Adaptive immune-genetic algorithm for global optimization to multivariable function[J].Journal of Systems Engineering and Electronics,2007,18(3):655-660. 被引量:9
  • 5ZHAO Shu-guang, JIAO Li-cheng. Multi-objective evolutionary design and knowledge discovery of logic circuits based on an adaptive genetic algorithm[J]. Genetic Programming and Evolvable Machines, 2006,7(3) : 195-210. 被引量:1
  • 6SRINIVAS M, PATNAIK L M. Adaptive probabihies of crossover and mutation in genetic algorithm [ J]. IEEE Trans on Systems Man and Cybernetics, 1994,24 (4) :656- 667. 被引量:1
  • 7COELLO C A , Avan VELDHUIZEN D, LAMOUT G B. Evolutionary algorithms for solving multi-objective problems[M]. New York: Kluwer Academic Publishers, 2002. 被引量:1
  • 8张义国,罗文坚,王煦法.基于免疫原理的逻辑电路设计算法[J].计算机工程与应用,2006,42(11):38-40. 被引量:5

二级参考文献17

  • 1陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433. 被引量:79
  • 2A Thompson,P Layzell,R S Zebulum.Explorations in design space:Unconventional electronics design through artificial evolution[J].IEEE Transactions on Evolutionary Computation,1999,3(3):167~196 被引量:1
  • 3X Yan,T Higuchi.Promises and challenges of evolvable hardware[J].Workshop on Artificial Immune Systems and Their Applications,1999,29(1):87~97 被引量:1
  • 4L N de Castro,J Timmis.Artificial immune systems:a new computational intelligence approach.Springer,2002 被引量:1
  • 5Wenjian Luo,Xufa Wang et al.Evolutionary negative selection algorithms for anomaly detection[C].In:Proceedings of the 7th International Conference on Computational Intelligence and Natural Computing(CINC'2005),held in conjunction with the 8th Joint Conference on Information Sciences (JCIS'2005),Salt Lake City,Utah,2005-07 被引量:1
  • 6Miller J F,Job D,Vassilev V K.Principles in the evolutionary design of digital circuits-part i[J].Journal of Genetic Programming and Evolvable Machines,1999, 1 (1):8~35 被引量:1
  • 7F M Burnet.The clonal selection theory of acquired immunity[M].Cambridge:Cambridge University Press,1968 被引量:1
  • 8S A Hofmeyr.An interpretative introduction to the immune system.Design Principles for the Immune System and other Distributed Autonomous Systems[M].Oxford University Press,2000 被引量:1
  • 9L N de Castro,F J Von Zuben.Learning and optimization using the clonal selection principle[J].IEEE Transactions on Evolutionary Computation,2002, 6 (3):239~251 被引量:1
  • 10Holland J H.Adaptation in natural and artificial systems.University of Michigan Press,1975. 被引量:1

共引文献27

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部