期刊文献+

混合蚁群算法及其用于有机物毒性的QSAR研究 被引量:2

Hybrid ant colony algorithm and its application to QSAR for toxicities of organic substance
原文传递
导出
摘要 设计一种新的混合蚁群算法。该算法以一种新的二进制蚁群算法为基础,混合PBIL(population based incremental learning)算法及遗传算法的交叉操作和变异操作,从而大大提高了种群的多样性及收敛速度,改善全局最优解的搜索能力。通过函数优化测试,表明该算法具有良好的收敛速度和稳定性,最后用于有机物毒性的QSAR研究中,取得较好效果。 A kind of new hybrid ant colony algorithm was designed. It uses a new binary ant colony algorithm as the basis, combining with PBIL and the crossover operation and the mutation operation of GA, thus greatly raising its population polymorphism and speedy convergence rate, and improving the searching ability of the overall optimal solution. Functions optimization tests show that the hybrid algorithm has fine convergence rate and stability. Good results are obtained by applying this algorithm to the modeling of QSAR for toxicities of organic substance.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2009年第5期549-552,共4页 Computers and Applied Chemistry
基金 国家863计划(2007AA04Z171) 上海市重点学科建设项目(编号:B504) 上海市自然科学基金(06ZR14027)
关键词 蚁群算法 PBIL 神经网络 QSAR ant colony algorithm (ACA), population based incremental learning (PBIL), neural network, QSAR
  • 相关文献

参考文献3

二级参考文献107

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 3Shapiro J L. Drift and scaling in estimation of distribution algorithms. Evolutionary Computation, 2005, 13(1):99-123 被引量:1
  • 4Zhang Q, Miihlenbein H. On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 127-136 被引量:1
  • 5Zhang Q. On the convergence of a factorized distribution algorithm with truncation selection[Online], available: http://cswww.essex.ac.uk/staff/zhang/EDAWEB/,May 10, 2006 被引量:1
  • 6Zhang Q. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 80-93 被引量:1
  • 7Rastegax R, Meybodi M Ft. A study on the global convergence time complexity of estimation of distribution algorithms. Lecture Notes in Computer Science, 2005, 3641:441-450 被引量:1
  • 8Gao Y, Culberson J. Space complexity of estimation of distribution algorithms. Evolutionary Computation, 2005,13(1): 125-143 被引量:1
  • 9Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 2002, 31(3): 221-258 被引量:1
  • 10Muhlenbein H, HSns R. The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation, 2005, 13(1): 1-27 被引量:1

共引文献328

同被引文献24

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部