期刊文献+

基于核学习算法的驾驶精神疲劳分级研究 被引量:3

Driving Mental Fatigue Staging Based on Kernel Learning Algorithm
下载PDF
导出
摘要 为了有效地评测人的驾驶精神疲劳状态,本文提出了一种基于核学习算法的精神疲劳分级方法。该方法首先用多变量自回归模型(MVAR)提取于前额、顶叶、枕叶共6个通道的多维脑电信号特征组成特征向量。然后用核主分量分析(KPCA)和优化支持向量机(SVM)对基于脑电信号(EEG)的驾驶精神疲劳进行分级。经过对3位受试者在3个状态下的驾驶精神疲劳进行分类,平均分类精度达到89.47%。分析显示,应用KPCA并结合优化SVM方法有效地降低了特征空间的维数,可实现较高精度的驾驶精神疲劳分级。 To effectively identify driving mental fatigue states, a new method based on kernel learning algorithm is presented. Firstly, multivariate autoregressive (MVAR) model is used to extract the feature vectors of six-channel electroencephalogram(EEG) signals from frontal, central and occipital electrods. Then, kernel principal component analysis (KPCA) and support vector machines (SVMs) with optimal parameters are proposed to classify driving mental fatigue. The method is used to classify three-level driving mental fatigue over 3 subjects. The average classification accuracy reaches to 89.47%. The result indicates that KPCA combined with optimal SVM can significantly reduce the dimensions of the feature vectors and obtain higher accuracy for classifying the driving mental fatigue.
出处 《数据采集与处理》 CSCD 北大核心 2009年第3期335-339,共5页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(30670534)资助项目
关键词 核主分量分析 支持向量机 多变量自回归模型 驾驶精神疲劳 脑电 kernel principal component analysis(KPCA) support vector maehines(SVMs multivariate autoregressive model driving mental fatigue electroencephalogram (EEG)
  • 相关文献

参考文献9

  • 1Lal S K L, Craig A, Boord P, et al. Development of an algorithm for an EEG-based dirver fatigue counterment[J]. Journal of Safety Research, 2003, 34 (:3) :321-328. 被引量:1
  • 2Muller K R, Mika S, RatschG, et al. An introduction to kernel-based learning algorithms [J]. IEEE Trans Neural Networks, 2001, 12(2):181-201. 被引量:1
  • 3Kocsor A,Toth L. Kernel-based feature extraction with a speech technology application [J]. IEEE Trans on Signal Processing, 2004, 52 (8): 2250- 2263. 被引量:1
  • 4Liu Yihung, Chen Yenting, Lu Sheyshin, et al. Face detection using kernel PCA and imbalanced SVM[C]//Advances in Natural Computation, Second International Conference, Part 1(LNCS 4221). Berlin :Springer, 2006 : 351-360. 被引量:1
  • 5Neumaier A, Schneider T. Estimation of parameters and eigenmodes of multivariate autoregressive modes[J]. ACM Transactions on Mathematical Software, 2001, 27(1) :27-57. 被引量:1
  • 6Scholkopf B, Mika S, Burges C J C, et al. Input space versus feature space in kernel-based methods [J]. IEEE Trans Neural Networks, 1999, 10(5): 1000-1017. 被引量:1
  • 7Vapnik V N. Statistical learning theory[M]. New York: John Wiley and Sons Inc, 1998. 被引量:1
  • 8Hsu Chihwei, Lin Chihjen. A comparison of methods for multiclass support vector machines[J]. IEEE Trans Neural Networks, 2002, 13(2) :415-425. 被引量:1
  • 9Eoh Hong J, Chung Min K, Kim Seonghan. Electroencephalographic study of drowsiness in simulated driving with sleep deprivation [J]. International Journal of Industrial Ergonomics, 2005,35 (4): 307- 320. 被引量:1

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部