期刊文献+

一类非线性三阶边值问题的单调迭代方法 被引量:6

Monotone Iterative Method for a Nonlinear Third-Order Boundary Value Problem
下载PDF
导出
摘要 运用上下解的单调迭代方法讨论三阶常微分方程边值问题-u″′(t)=f(t,u(t),u′(t)),t∈[0,1]u(0)=u′(0)=u′(1)=0解的存在性,其中f(t,u,v):[0,1]×R×R→R为连续函数.在f关于u,v满足较弱单调条件的情形下。 In this paper, by using the monotone iterative method we discuss the existence of the solutions for the third-order boundary value problem {-U''(t)=f(t,u(t),u'(t)),t∈[0,1] u(0)=u'(0)=u'(1)=0} where f(t, u, v) :[0,1] × R × R → is continuous. If f satisfies weaker monotone conditions about u and v, the authors establish a new maximum principle and obtain the existence results of the solutions.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期34-37,共4页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871160) 甘肃省自然科学基金资助项目(0710RJZA103)
关键词 三阶边值问题 极大值原理 上下解 单调迭代方法 third-order boundary value problem maximum principle upper and lower solutions mono-tone iterative method
  • 相关文献

参考文献8

  • 1Klaasen G. Differential Inequalities and Existence Theorems for Second and Third Order Boundary Value Problems [J]. Differential Equations, 1971, 10:529--537. 被引量:1
  • 2Jackson L K. Existence and Uniqueness of Solutions of Boundary Value Problems for Third Order Differential Equations [J]. Differential Equations, 1973, 13:432 -- 437. 被引量:1
  • 3O'Regan D J. Topological transversality: Application to Third-Order Boundary Value Problem[J]. SIAM Math Anal, 1987, 19: 630--641. 被引量:1
  • 4Cabada A. The Method of Lower and Upper Solutions for Second, Third, Fourth and Higher Order Boundary Value Problems[J]. Math Anal, 1996, 27: 515- 527. 被引量:1
  • 5Yao Q L, Feng Y Q. The Existence of Solution for a Third-Order Two-Point Boundary Value Problem [J]. Appl Math Lett, 2002, 15: 227--232. 被引量:1
  • 6Feng Y Q, Liu S Y. Solvability of a Third-Order Two-Point Boundary Value Problem [J]. Appl Math Lett, 2005, 18: 1034 -- 1040. 被引量:1
  • 7陈顺清.三阶边值问题两个正解的存在性[J].西南师范大学学报(自然科学版),2004,29(5):803-806. 被引量:5
  • 8甘在会,蒋涛.一类线性微分方程解的个数[J].四川师范大学学报(自然科学版),2001,24(4):336-338. 被引量:2

二级参考文献9

  • 1陈顺清.一类三阶三点方程组的正解存在性[J].西南师范大学学报(自然科学版),2004,29(4):553-558. 被引量:1
  • 2郭大钧 孙经先.拓朴度的计算及应用.数学研究与评论,1988,(3):469-480. 被引量:3
  • 3[1]Lazer A C, Mckenna P J. Global bifurcation and a theorem of tarantello[J]. J Math Anal Appl,1994,181:648~655. 被引量:1
  • 4[2]Gregu M, eda V, vec M. Ordinary Differential Equations[M]. Slovak:Alfa Bratislava,1985. 被引量:1
  • 5[3]Rovderov E. Number of solutions of boundary value problems[J]. Nonlinear Analysis,1993,21(5):363~368. 被引量:1
  • 6Erbe L H, Wang Haiyuan. On the Existence of Positive Solutions of Ordinary Differential Equations [J]. proc Amer Math Soc, 1994, 120(3): 743 - 748. 被引量:1
  • 7Wong Fu Hsiang. Existence of Positive Solutions for m-Laplaeian Bvps [J]. Appl Math Letters, 1999, 12:11 - 17. 被引量:1
  • 8Erbe L H, Hu Shouchuan, Wang Haiyan. Multiple Positive Solutions of Some Boundary Value Problems [J]. J Math And, 1994, 184:640 - 648. 被引量:1
  • 9李翠哲,葛渭高.一维p-Laplacian奇异Sturm-Liouville边值问题的正解[J].应用数学,2002,15(3):13-17. 被引量:17

共引文献5

同被引文献32

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部