摘要
运用上下解的单调迭代方法讨论三阶常微分方程边值问题-u″′(t)=f(t,u(t),u′(t)),t∈[0,1]u(0)=u′(0)=u′(1)=0解的存在性,其中f(t,u,v):[0,1]×R×R→R为连续函数.在f关于u,v满足较弱单调条件的情形下。
In this paper, by using the monotone iterative method we discuss the existence of the solutions for the third-order boundary value problem {-U''(t)=f(t,u(t),u'(t)),t∈[0,1] u(0)=u'(0)=u'(1)=0} where f(t, u, v) :[0,1] × R × R → is continuous. If f satisfies weaker monotone conditions about u and v, the authors establish a new maximum principle and obtain the existence results of the solutions.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第5期34-37,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(10871160)
甘肃省自然科学基金资助项目(0710RJZA103)
关键词
三阶边值问题
极大值原理
上下解
单调迭代方法
third-order boundary value problem
maximum principle
upper and lower solutions
mono-tone iterative method