期刊文献+

监控场景下的目标自适应跟踪

Adaptive Object Tracking in Surveillance System
下载PDF
导出
摘要 目标跟踪是监控系统的关键技术之一。Mean-Shift作为高效的模式匹配算法,已经成功地应用在对实时性要求较高的目标跟踪系统中,但是传统的Mean-Shift跟踪算法未能有效地解决跟踪窗自适应和目标特征更新问题,无法实现对目标的长时间跟踪。论文提出了卡尔曼滤波、局部目标检测和Mean-Shift有机结合的目标自适应跟踪方法,能有效的解决跟踪窗自适应和跟踪目标的特征更新问题,并有较强的抗遮挡的能力,提高跟踪的稳健性。并通过跟踪实验对比验证了算法的有效性。 Object tracking is one of the key technologies in multi-camera surveillance system.As a high-performance pattern-matching algorithm, Mean-Shift has been successfully applied to many real-time tracking systems.But classic Mean-Shift based tracking algorithm can not effectively solve the problem of tracking window adaptivity and characteristics update.So,it can not track an object for a long time.In this paper,an adaptive tracking method is proposed which combines Kalman filter,local object detection and Mean-Shift.This method can be an effective solution to tracking window adaptivity and characteristics update,and also has a strong anti-blocked ability.Some experiments are applied to verify the effecavity of the algorithm.
作者 陈勇 周越
出处 《微型电脑应用》 2009年第5期14-16,4,共3页 Microcomputer Applications
关键词 KALMAN 目标检测 MEAN-SHIFT 跟踪窗自适应 特征更新 Kalman Object detection Mean-Shift Tracking window adaptivity Characteristics update
  • 相关文献

参考文献5

  • 1Comaniciu D,Ramesh V.Meer P. Real-Time Tracking of Non-rigid objects Using Mean Shift[C].Wemer B,ed.IEEE Int'l Proc.of the Computer Vision and Pattern Recognition, Vol 2. Stonghton:Printing House, 2000. 142-149. 被引量:1
  • 2Comaniciu D., Ramesh V., Meer P. Kernel-based Object Tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5) 605-614. 被引量:1
  • 3Collins RT.Mean-Shift Blob Tracking through Scale Space [ C ]. Danielle M, ed. IEEE Int'l Conf.on Computer Vision and Pattern Recognition,Vol 2.Baltirnore:Victor Graphics, 2003. 234-240. 被引量:1
  • 4彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 5Ismail Haritaoglu,David Harwood,Larry S Davis.W4:Real- Time Surveillance of People and Their Activities [ J ].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8): 809-830. 被引量:1

二级参考文献10

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40. 被引量:1
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799. 被引量:1
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149. 被引量:1
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635. 被引量:1
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219. 被引量:1
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575. 被引量:1
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240. 被引量:1
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857. 被引量:1
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245. 被引量:1
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533. 被引量:1

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部