期刊文献+

NLS问题的正则化修正高斯-牛顿法 被引量:4

Regularization modified Gauss-Newton method for solving NLS problem
下载PDF
导出
摘要 本文借助于正则化理论,通过添加稳定泛函μΩ(z)=μ2‖xk-xk-1‖2,结合修正高斯-牛顿法,构造了非线性最小二乘问题正则化修正高斯-牛顿法求解公式;解决了普通修正高斯-牛顿法在迭代过程中其Jacobian矩阵是秩亏或者严重病态导致的不能收敛的问题;给出了非线性秩亏自由网平差的正则化修正高斯-牛顿法步骤;最后以几个经典非线性最小二乘问题为例进行了数值实验,说明了本文所提方法的正确性和适用性。 Based on regularization theory, by adding the stable function μΩ(z)=μ^2‖xk-xk-1‖^2 and referring to the modified Gauss-Newton method, this paper constructs the regularization modified Gauss-Newton method to solve the nonlinear least square problem. The method could solve the problems that lead to non-convergence because of the rank-deficient Jacobian matrix or very ill-conditioned in numerical iterative process. This paper not only gives the procedure of the constructed method for solving NLS problem, but also puts forward the approach of solving nonlinear adjustment of free networks with rank deficiency. The numerical experiment shows that the method mentioned here is accurate and useful.
作者 唐利民
出处 《工程勘察》 CSCD 北大核心 2009年第6期58-61,共4页 Geotechnical Investigation & Surveying
基金 湖南省科技计划项目(2008SK3054)
关键词 NLS问题 正则化 修正高斯-牛顿法 数值迭代 不适定问题 nonlinear least square problem regularization modified Gauss-Newton method numerical iterative III-posed problems
  • 相关文献

参考文献19

  • 1[苏]A.H吉洪诺夫,B.只.阿尔先宁著,王秉忱译.不适定问题的解法[M].北京:地质出版社,1979:142-174. 被引量:2
  • 2Tikhonov, A. N. (Andrei Nikolaevich), Nonlinear ill-posed problems [M]. London: Chapman & Hall, 1998. 25- 286. 被引量:1
  • 3Efiksson, J., Optimization and Regularization of Nonlinear Least- Squares Problems, PhD Thesis, Umea University, Umea, Sweden, 1996:11 - 98. 被引量:1
  • 4Eriksson, J., Wedin, P. A., Gulliksson, M. E. and Soderkvist, I., Regularization Methods for Uniformly Rank- Deficient Nonlinear Least-Squares Problems, Journal of Optimization Theory and Applications, 2005, 127 ( 1 ) : 1 - 26. 被引量:1
  • 5王新洲..非线性模型参数估计理论与应用[M],2002.
  • 6Gill, P. E., Murray, W. and Wright, M. H., Practical Optimization [M]. Academic Press, London, United Kingdom, 1982: 52-158. 被引量:1
  • 7Bertsekas, D. P., Nonlinear Programming [ M ]. Athena Scientific, Belmont, Massachusetts, 1995: 23-69. 被引量:1
  • 8刘钦圣编著..最小二乘问题计算方法[M].北京:北京工业大学出版社,1989:238.
  • 9Ortega, J. M., and Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables [ M ]. Academic Press, New York, NY, 1970: 56- 153. 被引量:1
  • 10Ramsin, H., and Wedin, P. A., A Comparison of Some Algorithms for the Nonlinear Least-Squares Problem [ J ]. BIT, 1977, 17: 72-90. 被引量:1

二级参考文献26

共引文献197

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部