期刊文献+

深水波浪非线性薛定谔方程及其精确解 被引量:4

Nonlinear Schrdinger equation for deep-water wave and its exact solutions
下载PDF
导出
摘要 参考Debnath从一般非线性波浪弥散关系推导得出形式为非线性薛定谔方程的波浪传播方程的方法,从非线性二阶Stokes波深水情况下的弥散关系出发,分析了此具体弥散波浪情况下的非线性薛定谔方程,并利用修正影射法对此波浪方程求解,得到非线性波浪周期精确解,此解在形式上与现有解不同,同时包含了Debnath的解,并在极限条件下可得到波浪的孤立波解。 Debnath derived the nonlinear schrodinger (NLS) equation form from the general form of the nonlinear wave dispersion relation. In this paper, the analysis of the NLS equation bagins from the 2-order Stokes' nonlinear deep-water wave dispersion relation. The exact solutions of the nonlinear wave are obtained by using the modified mapping method. As this spe- cialization of this equation, the solutions are different from those that obtain and contain the solutions as Debnath did. At the same time, the solitary solution is obtained in the their limit.
出处 《水科学进展》 EI CAS CSCD 北大核心 2009年第3期361-365,共5页 Advances in Water Science
基金 国家自然科学基金资助项目(40476039) 教育部高等学校博士学科点基金资助项目(20050294009)~~
关键词 非线性薛定谔方程 弥散关系 孤立波 JACOBI椭圆函数 nonlinear schrodinger equation dispersion relation solitary wave Jacobi elliptic functions
  • 相关文献

参考文献6

二级参考文献58

  • 1Y.Z. Peng, Acta Phys. Pot. A103 (2003) 417. 被引量:1
  • 2F. Bowman, Introduction to Elliptic Functions with Applications, Universities, London (1959). 被引量:1
  • 3M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York (1972). 被引量:1
  • 4V. Prasolov and Y. Solovyev, Elliptic Functions and Elliptic Integrals, American Mathematical Society, Providence(1997). 被引量:1
  • 5S.K. Liu and S.D. Liu, Nonlinear Equations in Physics,Peking University Press, Beijing (2000) . 被引量:1
  • 6Y.Z. Peng, Phys. Lett. A314 (2003) 401. 被引量:1
  • 7Y.Z. Peng, Int. J. Theor. Phys. 42 (2003) 863. 被引量:1
  • 8Y.Z. Peng, J. Phys. Soc. Jpn. 72 (2003) 1889. 被引量:1
  • 9Y.Z. Peng, Chin. J. Phys. 41 (2003) 103. 被引量:1
  • 10Y.Z. Peng, J. Phys. Soc. Jpll. 72 (2003) 1356. 被引量:1

共引文献145

同被引文献34

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部