期刊文献+

内蒙古半干旱区树木非结构性碳、氮、磷的分配格局 被引量:41

Non-Structural Carbohydrate,N,and P Allocation Patterns of Two Temperate Tree Species in a Semi-Arid Region of Inner Mongolia
下载PDF
导出
摘要 为探讨半干旱区树木各器官中养分浓度的分配格局、养分之间的化学计量关系,以及植物器官养分浓度与树种、土壤养分条件之间的关系,选取内蒙古东南缘的两种天然的典型树种(白桦和白杄),对其叶片、树干、基部最粗根以及根尖中的总非结构性碳水化合物(TNC)、氮(N)和磷(P)浓度进行分析。结果表明:TNC浓度在叶片中最高,在根尖中最低,两者的浓度差异在53%以内;而N和P浓度在叶片和根尖中最高,树干和基部最粗根中最低,不同器官最大差异达98%。这种分配格局与各器官的生理功能(碳水化合物的生产、养分的吸收和储藏)密切相关。此外,白杄的TNC∶N和TNC∶P均大于白桦,这些格局不仅和树种本身的生理特性有关,而且反应了土壤的养分状况。 To examine patterns of nutrient concentrations in different organs, stoichiometry of various nutrients, and the relation of nutrient concentrations with species and the environment, the concentrations of total non-structural carbohydrate (TNC), nitrogen (N), and phosphorus (P) among leaves, stems, tap roots, and first order roots in Asian white birch (Betulaplatyphylla) and Meyer spruce ( Picea meyeri) were studied. The two species were located in the southeastern edge of Inner Mongolia. For TNC, leaves had the highest and first order roots had the lowest concentrations ; the largest difference between them was less than 53%. For N and P, however, there were much higher concentrations in leaves and first order roots than that in stems and the tap roots; the largest difference between them was about 98%. These patterns were determined by the physiological roles (carbohydrate production, nutrient uptake and storage, etc. ) that different organs play. In addition, both TNC : N and TNC : P of Meyer spruce were higher than those of Asian whiter birch, reflecting the physiology of different species and variations in soil nutrient conditions.
出处 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期519-527,共9页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金项目(90511002,30470294)
关键词 非结构性碳水化合物 白桦 白杄 植物器官 半干旱 non-structural carbohydrate nitrogen phosphorus Betula platyphylla Picea meyeri organs semi-arid
  • 相关文献

参考文献58

  • 1Ericsson T, Rytter L, Vapaavuori E. Physiology of carbon allocation in trees. Biomass and Bioenergy, 1996, 11(2-3) : 115-127 被引量:1
  • 2Komer C. Carbon limitation in trees. Journal of Ecology, 2003, 91(1): 4-17 被引量:1
  • 3Loewe A, Einig W, Shi L, et al. Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytologist, 2000, 145(3) : 565-574 被引量:1
  • 4Farrar J, Jones D. The control of carbon acquisition by roots. New Phytologist, 2000, 147(1): 43-53 被引量:1
  • 5Millard P, Sommerkorn M, Grelet G. Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 2007, 175(1) : 11-28 被引量:1
  • 6Chapin F, Matson P, Mooney H. Principles of Terrestrial Ecosystem Ecology. New York: Springer, 2002 被引量:1
  • 7Lambers H, Chapin F, Pons T. Plant Physiological Ecology. New York: Springer, 1998 被引量:1
  • 8McGroddy M, Daufresne T, Hedin L. Scaling of C : N : P stoichiometry in forest ecosystems worldwide. Ecology, 2004, 85(9): 2390-2401 被引量:1
  • 9Reich P, Wahers M, Tjoelker M, et al. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 1998, 12(3): 395-405 被引量:1
  • 10Reich P, Oleksyn J. From the cover: Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, 2004, 101(30) : 11001-11006 被引量:1

二级参考文献8

共引文献56

同被引文献721

引证文献41

二级引证文献381

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部