期刊文献+

一种组合径向基函数网络结构的分类方法 被引量:5

A New Sort of Classification Method Based on Composite Radial Basis Function Network
下载PDF
导出
摘要 介绍了径向基函数网络(简称RBF网络)模型,分析了RBF网络的分类机理和分类特点,由于该网络隐层激活函数的有界性,RBF网络用于分类时,其分类判决范围也是有界的.针对一般的多层前馈网络分类器不能识别新的模式类型的问题,研究了一种将若干个RBF网络组合起来的分类方法,该分类器不仅能够对新类型的模式作出有效的拒识,而且还能通过再学习识别新的模式类型,具有增量学习的能力,最后给出了一个分类实例. A Radial Basis Function Network(RBFN) is introduced, and RBFN's classifying mechanism and its advantages in classification are anaylized. Because the activation function in its hidden layer is bounded, the decision boundary formed by RBFN is self limited. The main problem is that a conventional multilayer feedforward neural network classifier is unable to identify a novel pattern. In order to solve the problem, a new classifier, integrating a series of RBFNs, is proposed in this paper. The composite RBFN classifer will not misclassify novel patterns as the known classes, but identify them as new classes through learning new patterns once more. This classifier has ability accordingly to learn incrementally. Finally, a simulating example shows the results.
出处 《武汉交通科技大学学报》 1998年第1期47-50,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
关键词 神经网络 模式分类 径向基函数网络 模式识别 radial basis function radial basis function network pattern classification
  • 相关文献

参考文献4

  • 1赵振宇,徐用懋著..模糊理论和神经网络的基础与应用[M].北京:清华大学出版社;南宁,1996:203.
  • 2殷勤业,杨宗凯.模式识别与神经同络.北京:机械工业出版社,1992.24-163. 被引量:1
  • 3赵群,保铮.径向基函数神经网络的分类机理[J].通信学报,1996,17(2):86-93. 被引量:7
  • 4王长琼 孙国正.故障诊断神经网络模型的缺陷分析及对策[J].武汉交通科技大学学报,1997,21:119-123. 被引量:1

二级参考文献2

  • 1赵群,Proceeding of International Joint Conference on Neural Network,1993年 被引量:1
  • 2Wan E A,IEEE Transact Neural Networks,1卷,4期,303页 被引量:1

共引文献6

同被引文献31

  • 1付琨,匡纲要,郁文贤.高分辨率SAR图像地物分类算法研究[J].电子学报,2001,29(z1):1820-1823. 被引量:6
  • 2[2]Yoshihisa Hara, Robert G Atkins, et al. Application of neural networks to radar image classification [ J ]. IEEE Trans on Geoscience and Remote Sensing, 1994,32( 1 ): 100 - 109. 被引量:1
  • 3[5]Poggio T,F Grossi. Networks for approximation and learning[J].Proceedings of the IEEE, 1998,78(9):1481 - 1497. 被引量:1
  • 4[6]HWANG YS,BANGSY.An efficient method to construct a radial basis function neural network classifier [ J ]. Neural Networks, 1997, 10(8): 1495 - 1503. 被引量:1
  • 5[7]Girosi F. Some extensions of radial basis functions and their applications in artificial intelligence[ J ]. Computers Math, 1992,24 (12): 61 -80. 被引量:1
  • 6[8]Rinivasa V C,Joydeep Ghosh. Scale-based Clustering using the Radial Basis Function Network [ EB/OL ]. http://pegasus. ece. utexas. edu/journals. html. 被引量:1
  • 7[9]B Fritzke. Incremental neuro-fuzzy systems[ A ]. Proc SPIE's Optical Science, Engineering and Instrumentation' 97: Applications of Fuzzy Logic Technology Ⅳ[ C] .San Diego, CA:SPIE Press, 1997.2- 10. 被引量:1
  • 8[10]B Fritzke. Fast Learning with Incremental RBF Networks[J]. Neural Processing Letters, 1994,1 (1) :2 - 5. 被引量:1
  • 9边肇祺 张学工.模式识别(第二版)[M].北京:清华大学出版社,1999.12. 被引量:19
  • 10Wei Q, Kenneth SM Fung. Adaptive filtering of evoked potentials with radial-basis-function neural network prefilter.IEEE Tram on BME, 2002,49:225-232. 被引量:1

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部