摘要
研究一类执行器幅值与速率饱和的不确定非线性系统静态抗饱和控制问题.采用线性微分包含的方法处理系统模型中的非线性项.给出了抗饱和补偿器设计方法,该方法能同时保证闭环鲁棒稳定及鲁棒性能.给出了此类非线性系统代数环良定的充要条件,从而将抗饱和补偿器设计问题转化为线性矩阵不等式约束的凸优化问题.最后通过仿真算例说明了所提出方法的有效性.
The static anti-windup control is studied for a class of uncertain nonlinear systems subject to actuator magnitude and rate saturation. The nonlinear terms of the system model are dealt with by using the linear differential inclusions method. The design method of the anti-windup compensator is proposed, which can assure the closed-loop robust stability and robust performance simultaneously. Furthermore, the necessary and sufficient condition for the well-posedness of the algebraic loop is given for this kind of nonlinear systems. Thus, the design problem of the anti- windup compensator is expressed as the convex programming problem subject to linear matrix inequalities. Finally, the simulation results show the effectiveness of the proposed method.
出处
《控制与决策》
EI
CSCD
北大核心
2009年第5期764-768,共5页
Control and Decision
基金
国家自然科学基金项目(60704004)
关键词
幅值与速率饱和
抗饱和控制
线性矩阵不等式
代数环良定性
Magnitude and rate saturation
Anti-windup control
Linear matrix inequality
Well-posedness of the algebraic loop