期刊文献+

基于人工鱼群算法的动态模糊聚类 被引量:2

Dynamic fuzzy clustering method based on artificial fish swarm algorithm
下载PDF
导出
摘要 针对传统的模糊C-均值(FCM)聚类算法的聚类有效性对空间样本分布的依赖性等缺点,提出了一种新的基于人工鱼群算法的动态模糊聚类。通过引入模糊等价矩阵来表示高维样本之间的相似程度,并将高维样本映射到二维平面。然后利用人工鱼群算法不断优化二维样本的坐标值,使样本之间的欧氏距离向样本间的模糊等价矩阵趋近,最终实现模糊聚类。该方法克服了聚类有效性对高维样本空间分布的依赖性并同时提高了效率。仿真实验结果证明了该算法是有效的,具有聚类速度快、精度高等特点。 In order to avoid the dependence of the validity of clustering on the space distribution of high dimensional samples of Fuzzy C-Means ( FCM), a dynamic fuzzy clustering method based on artificial fish swarm algorithm was proposed. By introducing a fuzzy equivalence matrix to the similar degree among samples, the high dimensional samples were mapped to two dimensional planes. Then the Euclidean distance of the samples was approximated to the fuzzy equivalence matrix gradually by using artificial fish swarm algorithm to optimize the coordinate values. Finally, the fuzzy clustering was obtained. The proposed method, not only avoided the dependence of the validity of clustering on the space distribution of high dimensional samples, but also raised the clustering efficiency. Experiment results show that it is an efficient clustering algorithm with rapid speed and high precision.
出处 《计算机应用》 CSCD 北大核心 2009年第6期1569-1571,共3页 journal of Computer Applications
基金 国家民委科研项目(08GX01) 广西自然科学基金资助项目(0832082) 广西民族大学创新计划项目(gxun-chx0885)
关键词 动态模糊聚类 人工鱼群算法 模糊相似矩阵 高维样本 模糊等价矩阵 dynamic fuzzy clustering artificial fish swarm algorithm fuzzy similarity matrix high dimension sample fuzzy equivalence matrix
  • 相关文献

参考文献14

  • 1Jiawei,Han,Micheline,Kamber..数据挖掘 概念与技术 英文[M].北京:高等教育出版社,2001:550.
  • 2黄凤岗,宋克欧编著..模式识别[M].哈尔滨:哈尔滨工程大学出版社,1998:168.
  • 3ZHANG YUAN-QUAN, RUEDA L. A geometric framework to visualize fuzzy clustered data [ C]//Proceedings of the XXV International Conference on the Chilean Computer Science Society. Washington, DC: IEEE Computer Society, 2005:13 - 17. 被引量:1
  • 4张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 5高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100
  • 6HATHAWAY R J, BEZDEK J C. Fuzzy c-means clustering of incomplete data [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2001, 31(5): 735-744. 被引量:1
  • 7AGGARWAL C, YU P. Finding generalized projected clusters in high dimensional spaces[ C]// SIGMOD'00: Proceedings of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000:70 -81. 被引量:1
  • 8李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:882
  • 9KAMEL S M. New algorithms for solving the fuzzy C-means cluste- ring problem [ J]. Pattern Recognition, 1994, 27(g) : 14 -21. 被引量:1
  • 10赵艳厂,谢帆,宋俊德.一种新的聚类算法:等密度线算法[J].北京邮电大学学报,2002,25(2):8-13. 被引量:14

二级参考文献55

  • 1张利彪,周春光,刘小华,马铭,吕英华,马志强.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534-540. 被引量:23
  • 2戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17. 被引量:1
  • 3[1]Alsabti K,Ranka S,Singh V.An efficient k-means clustering algorithm[C].IPPS-98,Proceedings of the First Workshop on High Performance Date Mining,Orlando,Florida,USA,1998. 被引量:1
  • 4[2]Bradley P S,Mangasarian L.k-plane Clustering[J].Journal of Global Optimization,2000,16(1):23-32. 被引量:1
  • 5[3]Zhang T,Ramakrishnan R,Livny M.BIRCH: an efficient data clustering method for very large databases[A].Proceedings of 1996 ACM-SIGMOD Int.Conf.on Management of Data[C].Montreal,Quebec:1996. 被引量:1
  • 6[4]Jain Anil K.Algorithms for Clustering Data[M].Prentice Hall,1998. 被引量:1
  • 7[5]Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C].Proceedings of the 2nd Int.Conf.on Knowledge Discovery and Data Mining,Portland,Dregon,1996. 被引量:1
  • 8Holland J H. Adaptation in natural and artificial system [M]. Ann Arbor: University of Michigan Press, 1975. 被引量:1
  • 9Kamel S M. New algorithms for solving the fuzzy cmeans clustering problem [J]. Pattern Recognition,1994, 27: 421. 被引量:1
  • 10高新波,IEEE ISPACS’98,1998年,387页 被引量:1

共引文献1219

同被引文献23

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部