期刊文献+

混合量子算法在旅行商问题中的应用研究

Application study on hybrid quantum algorithm in traveling salesman problem
下载PDF
导出
摘要 针对旅行商问题(TSP)的特点提出了一种新的解码方式,结合了进化计算(EA)和微粒群算法(PSO)的思想,构造了独特的混合量子算法(HQA).为进一步提高算法的性能,构造了改进混合量子算法(IHQA).IHQA在更新个体时能够指导惯性权重进行动态变化,决定个体在下一代被吸引或扩散.经测试证明,两种混合算法均表现出强大的寻优能力,IHQA效率更高. A novel method of coding was brought forward and the essence of evolutionary algo rithm (EA) and particle swarm optimization algorithm (PSO) was put into consideration in terms of the characteristics of Traveling Salesman Problem (TSP), and a distinctive hybrid quantum algorithm (HQA) was constructed. The breakthrough was taken as the means of updating the individual to improve the capability of HQA. Still further, the updating of inertial weight was guided dynamically, and the decision that individual would turn out to be attractive or repulsive in the next iteration was made. This new algorithm is called improved hybrid quantum algorithm(IHQA). The result of the test manifests that both two algorithms are of strong capability in optimum-searching, and IAQA performs better.
出处 《上海理工大学学报》 CAS 北大核心 2009年第2期160-164,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(70672110) 上海市重点学科建设资助项目(S30504)
关键词 量子比特 量子进化算法 混合量子算法 quantum bit quantum evolutionary algorithm hybrid quantum algorithm
  • 相关文献

参考文献11

  • 1邢文训,谢金星编著..现代优化计算方法 第2版[M].北京:清华大学出版社,2005:247.
  • 2《运筹学》教材编写组编..运筹学 第3版[M].北京:清华大学出版社,2005:474.
  • 3王安民.计算的量子飞跃[J].物理,2000,29(6):351-357. 被引量:5
  • 4HANK H,KIM J H. Genetic Quantum Algorithm and its Application to Combinatorial Optimization Problem [C]//IEEE Proceedings of the 2000 Congress on Evolutionary Computation. Piscataway : IEEE Press, 2000. 1 354-1 360. 被引量:1
  • 5HANK H, PARK K H, LEE C H, et al. Parallel Quantrim-inspired Genetic Algorithm for Combinatorial Optimization Problem[C]//Proceedings of the 2001 IEEE Congress on Evolutionary Computation. Piscat-away: IEEE, Press, 2001:1 422 - 1 429. 被引量:1
  • 6NARAYANAN A, MOORE M. Quantum-inspired genetic algorithm[C] //Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya, Japan: IEEE Press, 1996 : 61 - 66. 被引量:1
  • 7曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 8麦克维克斯.现代启发式方法[M].曹宏庆,译.北京:中国水利水电出版社,2003:147-149. 被引量:3
  • 9云庆夏..进化算法[M],2000.
  • 10杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(z1):1873-1877. 被引量:32

二级参考文献22

  • 1[1]Feynman R P. Int. J. Theor. Phys., 1982,21:467—488 被引量:1
  • 2[2]Deutsch D. Proc. R. Soc. Lond. A, 1985,400:97—117 被引量:1
  • 3[3]Shor P W. In:Goldwasser S ed. Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. Los Alamitos:IEEE Computer Society Press,1994.20—22;SIAM Journal of Computation,1997,26:1484—1509 被引量:1
  • 4[4]Grover L K. In:Proceedings, 28th Annual ACM Symposium on the Theory of Computing. 1996.212—221;Phys. Rev. Lett.,1997,79:325—328 被引量:1
  • 5[5]Kitaev A Y. 1995,preprint quant-ph/9511026 被引量:1
  • 6[6]Jozsa R.1997,preprint quant-ph/9707033 被引量:1
  • 7[7]Bennett C H, Bernstein E, Brassard G et al. SIAM Journal of Computation,1997,26:1411—1473 被引量:1
  • 8[1]Holland J H.Genetic algorithms and classifier systems:foundations and their applications [A].Proceedings of the Second Intemational Conference on Genetic Algorithms[C].1987:82-89. 被引量:1
  • 9[2]Rechenberg I.Evolutionsstrategie:Optimieung technischer Systeme nach PrinzISien der biologischen Evolution [M].Frommann-Holzboog,Stuttgart,1973. 被引量:1
  • 10[3]Klockgether J,Schwefel H P.Two-phase nozzle and hollow core jet experiments [A].In Elliott D.(eds.) Proc.11th Symp.Engineering Aspects of Magneto hydrodynamics [C].California Institute of Technology,Pasadena CA,March,1970,24-26:141-148. 被引量:1

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部