期刊文献+

光学材料抛光亚表面损伤检测及材料去除机理 被引量:13

Detection of Subsurface Damage and Material Removal Mechanism in Optical Polishing Process
下载PDF
导出
摘要 抛光后光学元件仍然存在亚表面损伤,它降低光学元件的抗激光损伤能力和光学性能,为去除抛光亚表面损伤以提升光学元件使用性能,需要对其进行准确检测和表征。首先,采用恒定化学蚀刻速率法和二次离子质谱法分别检测水解层深度和抛光杂质的嵌入深度。然后,使用原子力显微镜检测亚表面塑性划痕的几何尺寸。通过分析表面粗糙度沿深度的演变规律,研究浅表面流动层、水解层和亚表面塑性划痕间的依存关系。最后,建立抛光亚表面损伤模型,并在此基础上探讨抛光材料去除机理。研究表明:水解层内包括浅表面流动层、塑性划痕和抛光过程嵌入的抛光杂质;石英玻璃水解层深度介于76和105nm之间;抛光过程是水解反应、机械去除和塑性流动共同作用的结果。 Subsurface damage (SSD) may still exist in polished elements, which influences laser induced damage threshold and optical performance. Therefore, SSD must be reduced and finally removed from the polished surface to improve the service performance of optical elements. Hence it is required to make the accurate detection and characterization of the polishing SSD. In the current approach, firstly, the depth of hydrolyzed layer and embedded polishing contaminants were detected with constancy chemical etch rate technique and secondary ion mass spectrography, respectively. Then, dimension of subsurface plastic scratches was measured with atomic force microscope. Furthermore, the development of surface roughness with depth was analyzed, in order to discuss the correlation among superficial flow layer, hydrolyzed layer, and subsurface plastic scratches. Finally, the SSD model in polishing process was established, and, material removal mechanism was proposed on the basis of the model. The results show that hydrolyzed layer contains superficial flow layer, plastic scratches, and polishing contaminants. The depth of hydrolyzed layer on polished fused silica surface ranges from 76nm to 105nm. Optical polishing process is responsible for the corporate effects of hydrolyzed action, mechanical removal, and plastic flow.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2009年第2期107-111,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金重点项目(50535020) 新世纪优秀人才支持计划项目(NCET)
关键词 亚表面损伤 抛光 水解层 材料去除机理 subsurface damage polishing hydrolyzed layer material removal, mechanism
  • 相关文献

参考文献5

  • 1Camp D W, Kozlowski M R, Sheehan L M, et al. Subsurface damage and polishing compound affect the 355 - nm laser damage threshold of fused silica surfaees[C]//Proceedings of SPIE, 1998, 3244:356 - 364. 被引量:1
  • 2Feit M D, Rubenchik A M. Influence of Subsurface Cracks on Laser Induced Surface Damage[ C]//Proceedings of SPIE, 2004, 5273: 264- 272. 被引量:1
  • 3Kamimura T, Akamatsu S, Yamamoto M, et al. Enhancement of Surface-damage Resistance by Removing a Subsurface Damage in Fused Silica[ C]// Proceedings of SPIE, 2004, 5273: 244- 249. 被引量:1
  • 4Stolz C J, Menapace J A, Schaffers K I, et al. Laser Damage Initiation and Growth of Antireflection Coated S-FAP Crystal Surfaces Prepared by Pitch Lap and Magtetorheological Finishing[C]//Proceedings of SPIE, 2005, 5991: 449- 455. 被引量:1
  • 5Mansurov G M, Mamedov R K, Sudarushkin A S, et al. Study of The Nature of A Polished Quartz-glass Surface by Ellipsometic and Spectroscopic Methods[J]. Optical Spectroscopy, 1982, 52(5) : 509 - 513. 被引量:1

同被引文献140

引证文献13

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部