摘要
通过CCD监测白酒和掺入50%水的白酒两种不同液体液滴的生长过程,针对最大的液滴提取特征参数,利用主成分分析技术对特征参数进行优化,确定了5项有效的特征参数。最后采用BP神经网络识别不同的液滴。结果表明:不同液体液滴的轮廓特征参数是有区别的。因此,结合模式识别的图像液滴分析技术可以应用于分析和鉴别液体。
Monitor the growth process of two different liquid droplets that are wine and wine adding 50% of water through CCD, get out characteristic parameters of the biggest droplets, use the principal component analysis (PCA) to optimize the characteristic parameter, and determine 5 effective characteristic parameters. Finally the liquid droplets are recognized by using the BP nerve network. The result indicated: the characteristic parameters of liquid droplet are different. Therefore, image droplets parsing technique are used in the analysis and the distinction liquids.
出处
《光学仪器》
2009年第2期38-41,共4页
Optical Instruments
关键词
液滴分析
主成分分析
BP神经网络
droplets analysis
principal component analysis
BP neural network