期刊文献+

多自由度机器人逆运动粒子群优化求解方法 被引量:6

Inverse Kinematics Analysis of Multi-DOFs Serial Manipulators Based on PSO
下载PDF
导出
摘要 多自由度串联机器人逆运动求解的传统方法是从逆运动方程出发求解析解,在机构存在冗余自由度的情况下会出现求解困难。提出了利用粒子群优化理论直接从正向运动方程出发,求解机器人关节变量的方法。讨论了通过粒子群优化算法的位置-速度搜索模型求解关节变量的方法和步骤。实验对比了求逆运动解析解和本方法结果的差异;验证了在约束条件下搜索关节变量值的效果。实验证实了本算法的有效性。 Traditional method of Multi-DOFs serial manipulators analysis is based on inverse kinematic equations. A method based on Particle Swarm Optimization (PSO) to get optimal solution using kinematic equations directly was proposed. The method to get optimal solution of joint variables by particle swarm optimization's velocity-position search model was discussed. Tho difference between calculating inverse kinematic equations method and this paper's method was compared. Experiment validates the optimal solution of joint variables by PSO under constraint condition. Experimental results demonstrate the accuracy of the proposed algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第10期2930-2932,共3页 Journal of System Simulation
基金 国家自然科学基金(50608069)
关键词 多自由度机器人 逆运动学 适应度函数 粒子群优化 multi-DOFs serial manipulators inverse kinematics fitness function particle swarm optimization
  • 相关文献

参考文献7

二级参考文献39

  • 1刘得军,王娟,王世营,董德发.基于BP算法的六自由度并联机器人正运动学求解[J].组合机床与自动化加工技术,2006(1):35-37. 被引量:4
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994. 被引量:1
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975. 被引量:1
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73. 被引量:1

共引文献435

同被引文献47

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部