摘要
Wang-Said型广义Ball曲线(WSGB),以不同参数L统一表达了一批有用的曲线.利用对偶泛函,给出了此类曲线的一种新颖的显式细分算法.与传统的离散算法不同,该算法避免了烦琐的矩阵求逆及基转换,推导简捷;且其使用可归结为细分矩阵与顶点向量阵的乘积,绘图比较方便.作为特例,参数L取特殊值时验证了与Wang-Ball细分矩阵、Said-Ball细分矩阵表达式的统一性.
With the parameter of L, Wang-Said type generalized Ball curves(WSGB), represented a number of useful curves with an uniform expression. By using dual function, a novel explicit subdivision algorithm was given. Different with the traditional subdivision algorithms, this one avoids complicated computation by the matrix inversion and conversion of basis function. The algorithm can be efficiently achieved by multiply of subdivision matrix and vector of the vertices which leads to simple drawing of the curves. As a special case, we show Wang-Ball, Said-Ball curves can have unified subdivision matrix by choosing special parameter L.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2009年第5期600-605,共6页
Journal of Computer-Aided Design & Computer Graphics
基金
安徽科技学院稳定人才项目(ZRC200545)