期刊文献+

高分辨连续光源原子吸收光谱法测定植物中的硫 被引量:10

Determination of Sulfur in Plant Using a High-Resolution Continuum Source Atomic Absorption Spectrometer
下载PDF
导出
摘要 硫元素在富燃的乙炔/空气火焰可形成CS双原子分子,在某些特定的波长下,这些CS分子吸收谱线具有原子吸收的轮廓和一定的吸收强度。文章主要研究利用高分辨连续光源原子吸收光谱法,通过测定硫元素在富燃-乙炔/空气火焰条件下形成的CS双原子分子的吸光度值,从而测定植物样品中的硫元素含量。实验对乙炔-空气比例和燃烧器高度等仪器条件进行了优化;实验研究了五种有机溶剂对CS分子吸收产生的影响情况、其他共存元素的光谱干扰和化学干扰以及不同的消解酸种类对测定结果的影响。在优化的条件下,硫在CS257.961nm的检出限为14mg.L-1。通过对植物标准物质中硫含量的测定比对和精密度实验证明,利用连续光源原子吸收光谱法,在富燃-乙炔/空气焰条件下以CS分子测定植物样品中的硫元素是一种简单、快速、有效的方法。 A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source'atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nrn. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg· L^-1 , using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method fol; the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.
作者 汪雨 李家熙
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第5期1418-1421,共4页 Spectroscopy and Spectral Analysis
基金 中国地质调查局工作项目(1212010660406)资助
关键词 高分辨 连续光源 原子吸收 植物 Sulfur High-resolution continuum source Atomic absorption spectrometer Plant
  • 相关文献

参考文献17

  • 1Dmuchowski W,Bytnerowicz A.Environmental Pollution,1995,87(1):87. 被引量:1
  • 2Karolewski P,Giertych M J,Oleksynl J,et al.Water,Air,&.Soil Pollution,2005,160:95. 被引量:1
  • 3Purnell A L,Doolan K.J.Fuel,1983,62(10):1107. 被引量:1
  • 4McQuaker Neil R,Tony Fung Analytical Chemistry,1975,47:1462. 被引量:1
  • 5JacksonL L,Engleman E E,Peard J L.Environ.Sci.Technol.,1985,19:437. 被引量:1
  • 6Neemer M,Kump P,Rajcevic M,et al.Spectrochim.Acta Part B,2003,58:1367. 被引量:1
  • 7Landsberger S,Jervis R E,Balicki A.International Journal of Environmental Analytical Chemistry,1985,19(3):219. 被引量:1
  • 8Axelssona M D,Rodushkin I.Journal of Geochemical Exploration,2001,72(2):81. 被引量:1
  • 9Sutherland J.K.Fuel,1975,54(2):132. 被引量:1
  • 10Jurney E T,Curtis D B,Gladney E S.Anal.Chem.,1977,49(12):1741. 被引量:1

同被引文献161

引证文献10

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部