摘要
首先建立三维参数化轴承有限元模型,利用ANSYS软件对其进行数字仿真,得到轴承内部接触应力、应变的变化规律.在此基础上,运用Neumann展开Monte-Carlo随机有限元法(NSFEM),综合考虑轴承原始制造误差以及转速、载荷等不同工况对轴承动态性能的影响,对轴承进行多次随机虚拟试验,得出轴承可靠度,并以定量的概率给出轴承对各参数变量的可靠性灵敏度,为轴承疲劳强度计算和动态优化设计提供可靠的理论依据.
The inner contact stress and strain of a bearing change was found via developing a 3-D parameterized FEM model of bearings and a numerical simulation of the model with the software ANSYS. Then, the stochastic finite element method extended by Neumann (NSFEM) with Monte-Carlo method is introduced to consider comprehensively the effects of the original errors arising from manufacture and different working conditions including rotating speed and loads on the dynamic capability of bearing. With a stochastic virtual experiment done several times, the sensibilities to the reliabilities of all variable parameters of a bearing were given in form of probability, thus providing theoretically a reference for the fatigue strength calculation and optimum dynamic design of a bearing.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第5期724-727,共4页
Journal of Northeastern University(Natural Science)
基金
国家高技术研究发展计划项目(2006AA04Z408)
辽宁省自然科学基金资助项目(20062017)
关键词
随机有限元法
非线性接触
轴承
NSFEM
可靠性灵敏度
SFEM(stochastic finite element method)
nonlinear contact
bearing
NSFEM
sensitivity to reliability