期刊文献+

基于训练集平行分割的集成学习算法研究 被引量:1

Using Parallel Hyperplanes to Partition Training Set for Ensemble Learning
下载PDF
导出
摘要 针对大规模数据分类中训练集分解导致的分类器泛化能力下降问题,提出基于训练集平行分割的集成学习算法.它采用多簇平行超平面对训练集实施多次划分,在各次划分的训练集上采用一种模块化支持向量机网络算法训练基分类器.测试时采用多数投票法对各个基分类器的输出进行集成.在3个大规模问题上的实验表明:在不增加训练时间和测试时间的条件下,集成学习在保持分类器偏置基本不变的同时有效减少了分类器的方差,从而有效降低了由于训练集分割导致的分类器泛化能力下降. Aiming to handle the problem which generalization ability is decreased by partitioning training set, a machine learning algorithm was proposed to combine classifiers which are trained on training set partitioned by parallel hyperplanes. It used many clusters of parallel hyperplanes to partition training set on which each base classifier was trained by a SVM modular network algorithm and all these base classifiers were combined by majority voting strategy when testing. The experimental results on 3 large scale classification problems illustrate that ensemble learning can effectively reduce variance while keep bias and so cut down the descent of generalization ability but does not increase the training and test time.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第5期908-911,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金重点项目(60835004)资助 国家“八六三”计划项目(2007AA04Z244)资助 湖南省博士后科研资助专项计划项目(2008RS4005)资助
关键词 并行处理系统 学习系统 集成学习 parallel processing systems learning systems ensemble learning
  • 相关文献

参考文献15

  • 1Dieteerich T G.Ensemble methods in machine learning[C].In:Kittler J and Roli F ed.Proceedings of the First International Workshop on Multiple Classifier Systems.Cagliari,Italy,2000,1-15. 被引量:1
  • 2Kettler J,Hatef M,Robert P W,et al.On combining classifiers[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,20(3):226-239. 被引量:1
  • 3Brown G,Wyatt J,Harris R,et al.Diversity creation methods:a survey and categorization[J].Information Fusion Journal,2004,6(1):5-20. 被引量:1
  • 4Tang E K,Suganthan P N,Yao X.An analysis of diversity measures[J].Machine Learning,2006,65(1):247-271. 被引量:1
  • 5Provost F J,Aronis J M.Scaling up inductive learning with massive parallelism[J].Machine Learning,1996,23(1):1-42. 被引量:1
  • 6Chawla N V,Moore T E,Hall L O,et al.Distributed learning with bagging like performance[J].Pattern Recognition Letters,2003,24(1-3):455-471. 被引量:1
  • 7Chawla N V,Hall L O,Bowyer K W,et al.Learning ensembles from bites:a scalable and accurate approach[J].Journal of Machine Learning Research,2004,5(4):421-451. 被引量:1
  • 8Eschrich S,Hall L O.Learning from partitions of data:reducing the variance[C].Proceedings of the IEEE International Conference on Fuzzy Systems St.Louis,MO,USA:2003,666-671. 被引量:1
  • 9Frosyniotis D,Stafylopatis A,Likas A.A divide-and-conquer method for multi-net classifiers[J].Pattern Analysis Application,2003,6(1):32-40. 被引量:1
  • 10Lazarevic A,Obradovic Z.The distributed boosting learning algorithm[C].In:Provost F and Srikant R ed.Proceedings of the International Conference on Knowledge Discovery and Data Mining.San Francisco,USA:2001,311-316. 被引量:1

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部