期刊文献+

基于主成分回归的公路客运量预测模型研究 被引量:12

Highway Passenger Transport Volume Forecast Models Based on Regression of Principle Component Analysis
下载PDF
导出
摘要 运用主成分回归分析法,将影响公路客运量的众多相关因素简化为少数不相关因素,消除因变量过多导致的多重共线性,可构建公路客运量预测模型。实例证明,该模型具有较高的精度,适合影响因素指标发展较为明确的客运量短期预测。 Using the method of the regression of principal components analysis can simplify the numerous correlation factors affecting highway passenger transport volume to the minority non-correlated factor, in order to eliminate muhi-colinearity because of excessively many variables, and the forecast model of highway passenger transport volume is established. The instance indicates that the highway passenger transport volume forecast models embodies the high precision can be applied in short-term highway passenger transport volume forecast with the more explicit development.
出处 《交通标准化》 2009年第9期77-81,共5页 Communications Standardization
关键词 主成分回归 多重共线性 客运量预测 principle component analysis in regression muhi-colinearity passenger transport volume forecast
  • 相关文献

参考文献8

二级参考文献22

共引文献390

同被引文献67

引证文献12

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部