期刊文献+

基于统计自然语言处理技术的领域本体半自动构建研究 被引量:7

Research on Semi-automatic Construction of Domain Ontology Based on Statistical NLP Technique
下载PDF
导出
摘要 本体的构建是影响语义Web成功与否的重要因素之一。本文借鉴机器学习以及自然语言处理等技术成果尝试半自动构建本体,以专业研究论文为研究语料,采用N-Gram文本表达法从语料中抽取关键概念,计算主题度获取领域概念。利用改进的层次聚类算法对领域概念进行聚类以获取其等级体系,采用句法分析与统计相结合的方法从语料中获取可能的主、谓、宾模式为领域关系提供参考,并以农业史为例,设计开发了一个领域本体半自动构建实验系统,文中重点介绍了本体构建中概念的获取、等级关系、领域关系的构建以及形式化处理等关键技术的实现过程。 The success of the Semantic Web depends strongly on the proliferation of ontologies,which requires fast and easy engineering of ontologies and avoidance of knowledge acquisition bottleneck.In this paper we take the approach that constructed the ontology automatically,which attempted to take a method that extremely beneficial for the knowledge acquisition task was the integration of knowledge acquisition with machine learning techniques to increase the ontology construction effect,including domain concepts acquisition,taxonomy relation recognition,non-taxonomy relation recognition and ontology formalization description.This paper adopted an approach of Non-dictionary Chinese word Segmentation techniques based on N-Gram to acquire domain candidate concepts,take the method based of NLP in the recognition of domain concept property relation,extracted subject,predicate and object of sentences.This triangle data can be treated as the triplet of Data and Object Type Property.
作者 何琳 侯汉清
出处 《情报学报》 CSSCI 北大核心 2009年第2期201-207,共7页 Journal of the China Society for Scientific and Technical Information
基金 《中国农业科技遗产数字化保护与利用研究》(科技部社会公益专项基金项目子课题2005DIB6J028) 南京农业大学青年创新基金(Y200727)的资助。
关键词 领域本体 半自动构建 概念抽取 等级关系 领域关系 主谓宾模式 domain ontology semi-automatic construction concept extraction hierarchy relation domain relation S-P-O mode
  • 相关文献

参考文献17

  • 1Borys Omelayenko.Learning of Ontologies for the Web:the Analysis of Existent Approaches[OL].[2006-01-15].www.dcs.bbk.ac.uk/webDyn/webDynPapers/omelayenko.pdf. 被引量:1
  • 2Mu-Hee Song,et al.Ontology-Based Automatic Cla~ssi~fic~ati~on of Web Pages[OL].[2005-11-15].http://ieeexplore.ieee.org/iel5/10689/33749/01607205.pdf?arnumber=1607205. 被引量:1
  • 3Wu Shih-Hung,Domain Event Extraction and Representation with Domain Ontology[OL].[2006-03-13].Www.iis.sinica.edu.tw/…/paper-2003-Domain-Event-Extraction-and-Representation-with-Domain-Ontology.pdf. 被引量:1
  • 4Alexander Maedche,Steffen Staab.Ontology Learning for the Semantic Web[OL].[2005-11-15].www.aifb.uni-karlsruhe.de/WBS/sst/Research/Publications/ieee-semweb.pdf. 被引量:1
  • 5Ying Ding.Ontology Research and Development Part 1-A Review of Ontology Generation[OL].[2005-10-17].www.ece.ucf.edu/~crcd/ml-courses/ml2/student-projects/crcd-5(ref)/Review%20of%20Ontology%20Generation.pdf. 被引量:1
  • 6Joerg-Uwe Kietz,Alexander Maedche,Raphael Volz.A Method for Semi-Automatic Ontology Acquisition from a Corporate Intranet[OL].[2006-01-09].www.irit.fr/ACTIVITES/EQ-SMI/GRACQ/WSEKAW2000/PAPERS/Maedche.pdf. 被引量:1
  • 7董慧,余传明.中文本体的自动获取与评估算法分析[J].情报理论与实践,2005,28(4):415-418. 被引量:12
  • 8Bisson G,Nedellec C,Canamero D.Designing clustering methods for ontology building:The Mo'K workbench[OL].[2006.3.15].http://ol2000.aifb.uni-karlsruhe.de/final/GBisson-7.pdf. 被引量:1
  • 9郑丽萍,梁永全.基于聚类分析法的本体构造方法[J].青岛大学学报(自然科学版),2005,18(3):55-58. 被引量:4
  • 10Maedche A,Staab S.Mining Ontologies from Text[OL].[2006-03-05].www.e-biosci.org/hinxton/Hirschman.pdf. 被引量:1

二级参考文献13

  • 1Zuozhe, Natalya F Noy, McGuinness L. Ontology Development 101:A Guid to Creating Your First Ontology[OL/EB]. www.kunal.org/scoble/archives/2004_04. 被引量:1
  • 2Maedche A, Staab S. Learning Ontologies for the Semantic Web. Conference of the Second International Workshop on the Semantic Web, HongKong, 2001. 被引量:1
  • 3Omelayenko B.Learning of Ontologies for the Web: the Analysis of Existent Approaches . In : Proceedings of the International Workshop on Web Dynamics. London: [s. n.], 2001. 被引量:1
  • 4Cimiano P, Hotho A, Staab S. Comparing Conceptual, Divisive and Agglomerative Clustering for Learning Taxonomies from Text. In: Proceedings of 16th European Conference on Artificial Intelligence (ECAI2004). Valencia: [s. n.], 2004. 被引量:1
  • 5Li S L, et al. Ontology Learning for Chinese Documents Based on SVD and Concept Clustering. Joumal of Beijing Institute of Technology, 2003, 12 ( Suppl. ). 被引量:1
  • 6Golub G, Loan C F. Matrix Computations. [s. l.] : Johns Hopkins, 1996. 被引量:1
  • 7Nicholes C, Dahlberg R. Spotting Topics with Singular Value Decomposition, Principles of Digital Document Processing. 1998. 被引量:1
  • 8Mirsky L. Symmetric Gage Functions and Unitarily Invarlant Norms. Quarterly Journal of Mathematics, 1960 (11) : 50-59. 被引量:1
  • 9Maedche A, Staab S. Measuring Similarity between Ontologies. In: Proeeedings of EKAW'02 Springer. [s.l.]: [s.n.], 2002. 被引量:1
  • 10杨秋芬,陈跃新.Ontology方法学综述[J].计算机应用研究,2002,19(4):5-7. 被引量:87

共引文献14

同被引文献78

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部