期刊文献+

基于压缩传感理论的数据重建 被引量:9

Signal Reconstruction Based on Compressed Sensing
下载PDF
导出
摘要 随着信息技术的不断发展,人们对信息需求量越来越大,这给信号采样、传输和存储的实现带来的压力越来越大。近年来国际上出现的压缩传感理论为该问题的解决提供了新的解决方案。压缩传感理论首先将信号投影到一个低维的信号空间,然后通过解一个基于凸优化的非线性恢复算法将信号恢复,而仅仅需要很少的数据。介绍了CS理论框架并对其中存在的难点问题进行了探讨,主要有稀疏近似理论、观测矩阵、信号重建算法。最后将压缩传感理论应用到一维和二维图像数据重建中并给出了仿真结果。实验结果表明,该方法与传统压缩方法相比具有更高的压缩比,并且能够得到更小的压缩误差。 With the development of information technology, the demands for information are incressing dramatically, which causes a series of challenges in signal sampling, transmission and storage. An emerging theory of compressed sensing (CS) ,which is presented in recent years, provides a new method for solving this problem. CS project a singnal into a lower dimension at frist , then by using nonlinear recovery algorithms (based on convex optimization), super- resolved signals and images can be reconstructed from what appears to be highly incomplete data. Introduces the processing of the signal sparse representation, observation matrix and recovery algorithms and focus on the theoretical framework of oompressed sensing and discusses the existing difficult problems. Apply this new theory to data of one dimension and image of two dimensions and give the simulated result in the end. Experiments proved CS is higher compression ratio and smaller compression error than traditional data compression algorithm.
出处 《计算机技术与发展》 2009年第5期23-25,29,共4页 Computer Technology and Development
基金 国家自然科学基金(30770561)
关键词 信号采样 压缩传感 稀疏 凸优化 信号重建 signal sampling compressive sensing sparsity convex optimization signal reconstruction
  • 相关文献

参考文献10

  • 1Donoho D. Compressed sensing[J]. IEEE Trans. on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 2Laska J N, Kirolos S, Duarte M F, et al. Theory and implementation of an analog- to- information oonverter using Random Demodulation[J]. IEEE Trans. on Circuits and Systems, 2007,42(3) : 1959 - 1962. 被引量:1
  • 3Candes E,Wakin M B. An Introduction to Compressive Sampiing[ J ]. IEEE Signal Processing Magazine, 2008,48 ( 4 ) : 21 - 30. 被引量:1
  • 4Cormode G, Muthukrishnan S. Combinatorial Algorithms For Compressed Senaing [ J ]. IEEE Signal Processing Magazine, 2006,46(3) : 198 - 201. 被引量:1
  • 5Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans. on Information Theory,2006,52 (2) :489 - 509. 被引量:1
  • 6Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[ J ]. SIAM Review,2001,43(1) : 129 - 159. 被引量:1
  • 7Needell D, Vershynin R, Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. IEEE Trans. on Information Theory,2006,52(2):49- 59. 被引量:1
  • 8Tropp J A,Gilbert A. Signal Recovery from Partial Information by Orthogonal Matching Pursuit [EB/OL]. 2005- 04. www-personal, umich, edu/-jtropp/papers/TG05 - Signal - Recover. pdf. 被引量:1
  • 9Kim Seung - Jean, Koh K, Lustig M, et al. An Interior - Point Method for Large- Scale- Regularized Least Squares [ J ]. IEEE Journal of Selected Topics in Singnal Processing,2007,4 (1) :606 - 617. 被引量:1
  • 10Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[ J ]. Journal of Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing,2007,1(4):586 - 598. 被引量:1

同被引文献60

  • 1张军,韦岗,熊燕.基于相对自相关序列MFCC特征的丢失数据带噪语音识别方法[J].模式识别与人工智能,2005,18(1):45-49. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3CANDES E, WAKIN M B. An Introduction to Compressive Sampling [ J ]. IEEE Signal Processing Magazine, 2008, 48(4): 21-30. 被引量:1
  • 4SHI Gnangming, LIN Jie, CHEN Xuyang, et al. UWB echo signal detection with ultra-low rate sampling based on compressed sensing[J]. IEEE Trans. On Circuits and Systems-II: Express Briefs, 2008, 55(4): 379-383. 被引量:1
  • 5FIGUEIREDO M A T, NOWAK R D, WRIGHT S J.Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[JJ. IEEEJ-STSP, 2007, 1(4): 586-598. 被引量:1
  • 6TROPP J, GILBERT A.Signal recovery from partial information via orthogonal matching pursuit[J]. IEEE Trans Inform Theory, 2007, 53(12): 4566-4666. 被引量:1
  • 7COOKE M,GREEN P,JOSIFOVSKI L,et al.Robust automatic speech recognition with missing and unreliable acoustic data[J].Speech Commun.,2001 (34):267-285. 被引量:1
  • 8DONOHO D L.Compressed sensing[J].IEEE Trans.Informatian Theory,2006,52(4):1289-1306. 被引量:1
  • 9BORGSTROM B J,ALWAN A.Utilizing compressibility in reconstructing spectrographic data,with applications to noise robust ASR[J].IEEE Signal Processing Letters,2009,16(5):398-401,. 被引量:1
  • 10GRIFFIN A,HIRVONEN T,MOUCHTARIS A,et al.Encoding the sinusoidal model of an audio signal using compressed sensing[C]//Proc.ICASSP,2009.New York:IEEE Press,2009:153-156. 被引量:1

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部