期刊文献+

基于概率支持向量机方法的人脸识别 被引量:4

Face Recognition Based on the Probability Outputs of Multi-class Support Vector Machines
下载PDF
导出
摘要 针对智能会议场景对人脸识别的特殊情况,通过依据检测、跟踪得到头部区域与人脸区域的面积比,选择正面的人脸进行识别,降低了人脸姿态对人脸识别的影响.在分类方法的选择上,采用支持向量机方法,并对支持向量机方法进行了概率建模,分类器输出结果是测试人脸属于每类的概率.实验结果表明:该方法不仅使人脸识别的精度得到了提高,还提供了其属于所在类中的可信程度. To analyze face recognition in intelligent surveillance, face recognition based on the probability outputs of multi-class SVMs is proposed. Considering the special situation for face recognition in intelligent meeting scene, the front face is chosen for face recognition to reduce the pose effect, which is the ratio of the lengths or areas between the head and the face. The SVM method, which is modeled by the probability, is chosen as the classification method. The output of the SVM classifier is the probability of the tested face in each class, and the recognized face denotes the class with the highest probability. Experiment results show that this method not only improves the precision of face recognition, but also provides the reliability of the classification.
出处 《武汉理工大学学报(交通科学与工程版)》 2009年第2期345-348,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目(批准号:60672137) 教育部高校博士点基金(批准号:20060497015) 湖北省自然科学基金项目(批准号:2004ABA043) 中国石油科技创新基金项目(批准号:2008D-5006-03-04)资助
关键词 智能监控 概率 支持向量机 识别 intelligent surveillance probability support vector machines recognition
  • 相关文献

参考文献6

  • 1Jonsson J K, Matas J. Learning support vectors for face verification and recognition[C]//2000. Proceedings of 4th IEEE Intern. Conf. on Automatic Face and Gesture Recognition, 2000 : 208-213. 被引量:1
  • 2Sangho Park J K A. Recognition of two-person interactions using a hierarchical bayesian network[C]// ACM SIGMM International Workshop on Video Surveillance, 2003: 65-76. 被引量:1
  • 3肖小玲,李腊元.基于粒子滤波的场景事件实时识别[J].武汉理工大学学报(交通科学与工程版),2007,31(5):823-826. 被引量:2
  • 4Sung K, Poggio T. Example-based learning for viewbased human face detection[J]. IEEE Tran. on Pattern Analysis Machine Intelligence, 1998, 20(1): 39-51. 被引量:1
  • 5Moreira M, Mayoraz E. Improved pairwise coupling classification with correcting classifiers[C]// Proceedings of 10th European Conference on Machine Learning, 1998: 160-171. 被引量:1
  • 6Platt J C. Probabilities for support vector machines [M]// Advances in large margin classifiers. Massachusetts: MIT Press, 2000: 61-74. 被引量:1

二级参考文献7

  • 1李俊,卢凌,梁军,聂明新.交互式识别在SAR图像目标识别中的应用[J].武汉理工大学学报(交通科学与工程版),2006,30(6):996-999. 被引量:2
  • 2Arulampalam Sanjeev M, Simon Maskell, Neil Gordon. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 2002,50(2):174-188. 被引量:1
  • 3Doucet A, Gordon N, Krishnamurthy V. Particle filters for state estimation of jump markov linear systems. IEEE Trans. on Signal Processing, 2001, 49:613-624. 被引量:1
  • 4Nuria Olivera, Ashutosh Gargb, Eric Horvitz. Layered representations for learning and inferring office activity from multiple sensory channels. Computer Vision and Image Understanding . 2004,96:163-180. 被引量:1
  • 5Fine S, Singer Y, Tishby N. The hierarchical hidden markov model: analysis and applications. Machine Learning, 1998, 32(1): 41-62. 被引量:1
  • 6Hilary buxton. Learning and understanding dynamic scene activity: a review. Image and Vision Computing, 2003,21(1):125-136. 被引量:1
  • 7Nguyen N, Phung D, Venkatesh S, et al. Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model, in IEEE International Conference on Computer Vision and Pattern Recognition, 2005. 被引量:1

共引文献1

同被引文献29

  • 1刘洪,喻西崇,吴国云,石永新,李定伟.基于支持向量机算法的注水管道剩余寿命预测[J].石油机械,2005,33(3):17-20. 被引量:6
  • 2YANG J,WAIBEL A.Tracking human faces in real-time[R]. Pennsylvania,USA:Carnegie Mellon University Pittsburgh Pa School Of Computer Science, 1995. 被引量:1
  • 3COMANICIN D, RAMESH V, MEET P.Kemel-based object tracking [J].IEEE Trans on Pattem Analysis and Machine Intelligence,2003, 25 ( 5 ) : 564-575. 被引量:1
  • 4WANG Q,XU G,AI H.Leaning object intrinsic structure for robust visual tracking[C]//Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Madision:IEEE Press,2003 : 227-233. 被引量:1
  • 5MALASSIOTIS S, STRINTZIS M.Real-time head tracking and 3D pose estimation from range data[C]//Proc. IEEE International Conference on Image Processing.Barcelona : IEEE Press, 2003 : 859-862. 被引量:1
  • 6CHO S H, EPPINGER S D. A simulation-based process model for managing complex design projects [ J ]. I EEE Trans on Engineering Management,2005,52 ( 3 ) : 316- 328. 被引量:1
  • 7BASHIR H A, THOMSON V. Models for estimating design effort and time[J]. Design Studies,2001,22(2) : 141-155. 被引量:1
  • 8XU D, YAN H S. An intelligent estimation method for product design time [ J ]. International Journal of Advanced Manufacturing Technology,2006,30(7-8) : 601-613. 被引量:1
  • 9VAPNIK V N. The nature of statistical learning [ M ]. New York: Springer, 1995. 被引量:1
  • 10HAO Pei-yi. New support vector algorithms with parametric insensi- tive/margin model[ J]. Neural Networks ,2010,23( 1 ) : 60-73. 被引量:1

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部