期刊文献+

用期望最大化算法抑制角闪烁的预处理方法 被引量:3

Preprocessing of Glint Restraining Using EM Algorithm
下载PDF
导出
摘要 用高斯混合模型作为角闪烁噪声的近似统计模型,结合Kalman滤波器,提出了一种利用期望最大化(EM)算法抑制角闪烁噪声的预处理方法。首先采用EM算法处理一帧内的原始测量数据,预先得到目标真实位置的最大似然估计,这个预估计量服从渐进高斯分布,且其方差可求。然后将这个预估计量作为Kalman滤波器的输入量进行跟踪滤波,同时将目标位置的预测值作为下一帧EM迭代过程的初始值,进而形成闭环的跟踪滤波结构。仿真结果表明,该方法有效地抑制了角闪烁,使得Kalman滤波算法更加有效,从而提高了目标跟踪的精度。 Choosing Gaussian mixture model as the approximate statistical model of glint noise, and combining with Kalman filter, a new preprocessing method to restrain glint noise using Expectation Maximization (EM) algorithm is proposed. Firstly, using EM algorithm, we can get the pre-MLE ( Maximum Likelihood Estimator) of the true target position from original measurement data in a frame. The estimator obeys asymptotic Gaussian distribution, whose variance is able to be calculated. Then we send the pre-MLE to the Kalman filter as the input, meanwhile make the prediction of target position as the initial value for the EM iterative process in the next frame. It forms a tracking filter with close-loop. Simulation results show that this method is able to restrain glint efficiently, and ensure the efficiency of Kalman filter, which will improve target tracking.
出处 《电光与控制》 北大核心 2009年第5期81-85,共5页 Electronics Optics & Control
基金 国家重大安全基础项目
关键词 目标跟踪 角闪烁 预处理 EM算法 KALMAN滤波 target tracking glint preprocessing EM algorithm Kalman filtering
  • 相关文献

参考文献12

  • 1BORDEN B H, MUMFORD M L. A statistical glint/radar cross section target model [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1983,19 (5) : 781 - 785. 被引量:1
  • 2MASRELIEZ D J, MARTIN R D. Robust Bayesian estimation for the linear model and robustifying the Kalman filter [ J ]. IEEE Transactions on Automatic Control, 1977, 22(3) :361-371. 被引量:1
  • 3HEWER G A, MARTIN R D, ZEH J. Robust preprocessing for Kalman filtering of glint noise [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1987,23 ( 1 ) : 120 - 128. 被引量:1
  • 4DEMPSTER A P, LAIRD N, RUBIN D B. Maximum likelihood estimation from incomplete data via the EM algorithm [J]. J Roy Statist Soc B,1977,39:1-38. 被引量:1
  • 5GU D B, SUN J X. EM image segmentation algorithm based on an inhomogeneous hidden MRF model [ J ]. IEE Proc-Vis Image Signal Process ,2005, 152 (2) :184- 190. 被引量:1
  • 6YUAN L H, SONG J S, XUE W T, et al. SAR image classification based on MAP via the EM algorithm [J]. IEEE Proceeding of the 6^th World Congress on Intelligent Control and Automation,2006,2 : 10116 -10120. 被引量:1
  • 7DRAGAN O, ANDREI S, DANILO M, et al. Novel EM- based method for channel estimation and signal detection in MIMO-OFDM systems [ J ]. IEEE Proceeding of the International Conference on Computer as a Tool, EUROCON ,2005 : 1795 -1798. 被引量:1
  • 8OLIVIER C, MAURICE C, ERIC M. Recursive EM algorithm with application to DOA estimation [ J ]. IEEE Proceeding of the International Conference on Acoustics, Speech and Signal Processing,2006:Ⅲ664-Ⅲ667. 被引量:1
  • 9WU W R. Maximum likelihood identification of glint noise [J ]. IEEE Transanctions on Aerospace and Electronic Systems, 1996,32( 1 ) :41-51. 被引量:1
  • 10张士峰.混合正态分布参数极大似然估计的EM算法[J].飞行器测控学报,2004,23(4):47-52. 被引量:19

二级参考文献2

  • 1Bilmes J A.A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models.Department of Electrical Engineering and Computer Science, U.C.Berkeley TR-97-021,April 1998. 被引量:1
  • 2Roberts S J.Bayesian approaches to Gaussian mixture modeling.IEEE Trans.on Pattern Analysis and Machine Intelligence, 1998,20( 11): 1133-1142. 被引量:1

共引文献18

同被引文献40

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部