期刊文献+

多机器人的改进型边界探索算法 被引量:2

Improved frontier-based exploration algorithm for multi-robot
下载PDF
导出
摘要 针对多机器人探索未知环境问题,提出了改进型边界探索算法。该算法综合考虑边界角度和距离两种因素,引入分散机制,使机器人团队协同工作,避免出现拥挤,减少探索过程中的重复覆盖和路径交叉现象。基于与其他方法的实验比较结果表明,该探索方法使多机器人具有更好的团队协作能力,提高了探索效率。 To study the cooperating method of multi-robot in exploration, an improved frontier-based exploration algorithm (IFBE) is proposed. Applying in unknown environment exploration with multi-robot teams, this method integrates both orientation and distance of the frontiers and introduces the distribution mechanism so as to coordinate multi-robot's behaviors, avoid the collision of the multi-robot and reduce the repeated coverage and path crossover. Simulation results show that this method has a better coordination capability for multi-robot teams and improves the explorative efficiency of a multi-robot team.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第4期901-904,共4页 Systems Engineering and Electronics
基金 国家“863”高技术研究发展计划 沈阳机器人学国家重点实验室资助课题
关键词 多机器人 协同探索 边界探索 任务分配 multi-robot coordinated exploration frontiers-based exploration task assignment
  • 相关文献

参考文献11

  • 1Apostolopoulos D, et al. Robotic antarctic meteorite search: outcomes [C]// Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2001:4174 -4179. 被引量:1
  • 2Murphy R. Human-robot interaction in rescue robotics [J]. IEEE Trans. on Systems ,Man and Cybernetics Part C :Applications and Reviews. Human-Robot Interactions, 2004,34 (2) 138 - 153. 被引量:1
  • 3Andreas Birk, Stefano Carpin. Rescue robotics-a crucial milestone on the road to autonomous systems[J]. Advanced Robotics Journal, 2006b,20(5) :595 - 695. 被引量:1
  • 4黄宛宁,龚建伟,王鹏辉.基于改进遗传算法的多机器人任务分配方法[J].计算机仿真,2006,23(11):164-167. 被引量:6
  • 5Yamauehi B. Frontier-based exploration using multiple robots [C]//Proc. 2nd Int. Conf. Autonomous Agents, 1998: 47-53. 被引量:1
  • 6Simmons R, Apfelbaum D, Burgard W: et al. Coordination for Multi Robot Exploration and Mapping[C]//Proc. of the National Conference on Artificial Intelligence (AAAI), 2000. 被引量:1
  • 7Burgard W, Moors M, Stachniss C, et al. Coordinated Multi-Robot Exploration[J]. IEEE Trans. on Robotics, 2005 6,21 (3) :376 - 386. 被引量:1
  • 8Thomas Stutzle, Marco Dorigo. ACO algorithms for the quadratic assignment problem [C]//New Ideas in Optimization. New York : McGraw Hill, 1999. 被引量:1
  • 9袁杨,陈雄.基于群集智能算法的移动机器人路径规划研究[J].计算机工程与应用,2007,43(5):52-55. 被引量:5
  • 10Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Trans. on Systems Science and Cybernetics SSC4, 1968(2) : 100 - 107. 被引量:1

二级参考文献17

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2李茂军,罗安.单亲遗传算法的机理分析[J].长沙理工大学学报(自然科学版),2004,1(1):76-79. 被引量:9
  • 3张冲.组合拍卖中的胜者决定算法[C].北京大学信息科学系讲座,2003-6-6. 被引量:1
  • 4Brian P Gerkey and Maja J Mataric.Sold!:Auction Methods for Multirobot Coordination[C].IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION,OCTOBER 2002,18(5):758-768. 被引量:1
  • 5M Berhault,H Huang,P Keskinocad.Robot Exploration with Combinatorial Auctions[J].Georgia Institute of Technology 2003. 被引量:1
  • 6T Sandholm.An algorithm for optimal winner determination in Combinatorial auctions[C].International Joint Conference on Artificial Intelligence (IJCA I),Stockholm,Sweden,1999.542-547. 被引量:1
  • 7Dorigo M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997:53-66. 被引量:1
  • 8Stacey A.Particle swarm optimization with mutation[C]//Congress on Evolution Computation,2003:1425-1430. 被引量:1
  • 9Fan Xiao-ping.Optimal path planning for mobile robots based on intensified ant colony optimization algorithm[C]//Proceedings of2003 IEEE International Conference on Robotics,Intelligence Systems and Signal Processing,2003:131-136. 被引量:1
  • 10Qin Yuan-qing.Path planning for mobile robot using the particle swarm optimization with mutation operator[C]//Proceed ings of Thirds International conference on Machine Learning and Cybernetics,2004:2473-2478. 被引量:1

共引文献9

同被引文献9

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部