期刊文献+

基于三次样条插值的支持向量机研究 被引量:3

Research on SVM based on cubic spline interpolation
下载PDF
导出
摘要 在传统支持向量机的分类求解算法中,严格凸的无约束最优化问题中单变量函数+是不可微的。三次样条插值多项式光滑的支持向量机模型采用的是一种多项式光滑技术,使用三次样条插值二次多项式来逼近单变量函数+,将原始非光滑的支持向量机模型转化为光滑模型,从而可以使用最常用的最优化的算法进行求解,给出了使用三次样条插值方法来光滑单变量函数的具体推导过程。使用UCI机器学习数据集中的数据,通过实验验证了该模型的有效性。 In traditional SVM solution algorithms, objective function is a strictly convex unconstrained optimization problem, but is not differentiable due to x~, which precludes the use of most used optimization algorithms. Polynomial smooth techniques are applied to SVM model and replace x. by a very accurate smooth approximation that is cubic spline interpolation polynomial, thus the undifferential model is converted into a differential model. The deduction procedure of cubic spline interpolation polynomial smoothing x. is extended. Experiments with UC1 datasets show the validity of the model.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第7期1722-1724,1734,共4页 Computer Engineering and Design
基金 河南工业大学校基金项目(07XJC042 07XGG012)
关键词 支持向量机 三次样条插值 多项式光滑 单变量函数 机器学习 SVM cubic spline interpolation polynomial smooth univariate function machine learning
  • 相关文献

参考文献8

  • 1Vapnik V N.The nature of statistical leaning theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268
  • 3Dennis J E,Schnabel R B.Numerical methods for unconstrained optimization and nonlinear equations[M].NJ:Prentice-Hall,Englewood Cliffs,1983. 被引量:1
  • 4Yuh-Jye Lee,Mangasarian OL.SSVM:A smooth support vector machine[D].Data Mining Institute,Computer Science Department,University of Wisconsin,Madison,Wisconsin,1999.Computational Optimization and Applications,2001. 被引量:1
  • 5Fan YF,Zhang DX.He HC.Smooth SVM research:A polynomial-based approach[C].6th International Conference on Information,Communications and Signal Processing,2007:1-5. 被引量:1
  • 6袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 7韩虎,任恩恩,李玉龙.基于粗集理论的支持向量机分类方法研究[J].计算机工程与设计,2007,28(11):2640-2641. 被引量:8
  • 8Furey TS,Cristianini N,Dufry N,et al.Support vector machine classification and validation of cancer tissue samples using microarray expression data[J].Bioinformaties,2000,16(10):906-914. 被引量:1

二级参考文献10

  • 1张文修,吴伟志.粗糙集理论与方法[M].北京:科学出版社,2005. 被引量:64
  • 2李国正,王猛,曾华君,等译.支持向量机导论[M].北京:电子工业出版社,2005. 被引量:13
  • 3Ye Li,Yun-Ze Cai,Yuan-Gui Li,et al.Rough set method for SVM data processing[C].Proceeding of the IEEE Conference on Cybernetics and Intelligent System Singapore,2004. 被引量:1
  • 4Robert Burbidge,Bernard Buxton.An introduction to support vector machines for data minging[EB/OL].http://www-sta-tic.CC.gatech.edu/classes/AY2006/cs7641_spring/handouts/yor12-introsvm.pdf. 被引量:1
  • 5David Sanchez A V.Advanced support vector machines and kernel methods[J].Neuro Computing,2003,55:5-20. 被引量:1
  • 6Chih-Wei Hsu,Chih-Chung Chang,Chih-Jen Lin.A practical guide to support vector classification[EB/OL].http://home.eng.iastate.edu/~julied/classes/ee547/Handouts/SVMuseguide.pdf. 被引量:1
  • 7Bartlett P L,Shawe Taylor J.Generalization performance on support vector machines and other pattem classifiers[A].Advances in Kernel Methods Support Vector Learning[C].Cambridge,MA:MIT Press,1999. 被引量:1
  • 8Aleksander Ohm.Discernibility and rough sets in medicine toolsand application[EB/OL].http://www.diva-portal.org/diva/get-Document?urn_nbn_no_ntnu diva-458-1_fulltext.pdf. 被引量:1
  • 9卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41
  • 10YUAN, YX,BYRD, RH.NON-QUASI-NEWTON UPDATES FOR UNCONSTRAINED OPTIMIZATION[J].Journal of Computational Mathematics,1995,13(2):95-107. 被引量:25

共引文献2349

同被引文献16

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部