摘要
通过展开空间基的等价性,构造了均匀分划的七次B样条基函数的表达式。结构的动静力计算表明该基函数表征的物理概念清晰、简洁,表明该基函数具有良好的逼近性能和适应性,同时也表明高次B样条应用的可行性。基于子区间法的基本思想和方法,推导了基于均匀分划的七次B样条的子区间法递推格式。该递推格式虽然为条件稳定,适用于有限维的动力响应计算,同时也适用于无限维的无条件稳定。动力响应递推格式的实现拓展了新的计算方法和途径。通过力学方法获得的七次B样条的成果,属于逼近理论的基础部分,可以应用于需要逼近计算的诸多领域。
Based on the equivalence of the expanded spaces, the uniformly-divided 7th B-spline basis function is constructed. The static and dynamic analysis of structures shows that the basis function has good approaching property, adaptability, as well as feasibility. Adopting the basic idea of subintervals, this paper develops the recurrence algorithm of the uniformly-divided 7th B-spline subintervals. The recurrence algorithm is conditionally stable and suitable for the finite dimensional dynamic response calculation, but, the infinite dimensional, unconditionally stable dynamic response can also be calculated in a similar way. The results of 7th B-spline can be applied in various fields requiring approximate computation.
出处
《工程力学》
EI
CSCD
北大核心
2009年第4期16-20,共5页
Engineering Mechanics
关键词
动静力计算
子区间法
七次B样条
基函数
逼近计算
static and dynamic calculation
subinterval method
7th B-spline
basis function
approximationcomputation