期刊文献+

基于粒子滤波和GVF-Snake的目标跟踪算法 被引量:33

Object tracking algorithm based on particle filtering and GVF-Snake
下载PDF
导出
摘要 提出了一种基于粒子滤波和GVF-Snake的自适应目标跟踪算法。该算法首先采用背景差分法获取目标初始轮廓,利用改进的GVF-Snake的强大搜索能力,使Snake收敛至运动目标的真实轮廓;然后根据控制点的距离增删控制点,达到自适应地跟踪运动和变形目标的目的;最后通过结合粒子滤波和改进的GVF-Snake,得到一种能量粒子滤波(EPF)目标跟踪算法,并利用提出的的跟踪策略,改进其抗遮挡能力。实验结果表明,被跟踪目标在遮挡情况下也能够保持良好的跟踪效果。 An adaptive object tracking algorithm based on particle filtering and GVF-Snake is proposed. Firstly, the original contours of the objects are acquired using the background differencing method, and the true contours of the objects can be converged by means of the powerful searching ability of GVF-Snake. Secondly, by increasing or decreasing the contour points, the proposed algorithm can track moving and deformable objects adaptively. Finally, an energetic particle filtering (EPF) object tracking algorithm is proposed by combining particle filtering and GVF-Snake, and the proposed tracking tactics can effectively overcome the occlusions. Experiments show that the proposed algorithm can realize better tracking effect even though the tracked object is occluded.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第4期828-833,共6页 Chinese Journal of Scientific Instrument
基金 教育部科学技术研究重点项目(205060) 江苏省高校自然科学重大基础研究项目(07KJA51006) 江苏省计算机信息处理技术重点实验室苏州大学开放基金(KJS0712) 华为公司科技基金资助项目
关键词 粒子滤波 GVF-SNAKE 变形目标 轮廓跟踪 particle filtering GVF-Snake deformable object contour tracking
  • 相关文献

参考文献10

  • 1TAN H,CHEN X M,JIANG M.Object tracking based on Snake and sequential Monte Carlo method[J].Sixth International Conference on Intelligent Systems Design and Applications,2006,2:364-367. 被引量:1
  • 2JAMASBI B,MOTAMEDI S A,BEHRAD A.Tracking vehicle targets with large aspect change[J].IEEE Workshop on Motion and Video Computing,2007:22. 被引量:1
  • 3XU C,PRINCE J L.Snakes,shapes,and gradient vector flow[J].IEEE Trans.Image Processing,1998,7:359-369. 被引量:1
  • 4BETSER A,VELA P,TANNENBAUM A.Automatic tracking of flying vehicles using geodesic snakes and Kalman filtering[J].43rd IEEE Conference on Decision and Control,2004,2:1649-1654. 被引量:1
  • 5KHANSARI M,RABIEE H R,ASADI M,et al.A robust object shape prediction algorithm in the presence of white Gaussian noise[J].Proceedings of 12th International Multi-Media Modelling Conference,2006:4-6. 被引量:1
  • 6ARULAMPALAM M,MASKELL S,GORDON N,et al.A tutorial on particle filters for on-line non-linear/non-aussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188. 被引量:1
  • 7RATHI Y,VASWANI N,TANNENBAUM A,et al.Tracking deforming objects using particle filtering for geometric active contours[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2007,29(8):1470-1475. 被引量:1
  • 8CHENG J,YANG J,ZHOU Y,et al.Flexible background mixture models for foreground segmentation[J].Image and Vision Computing,2006,24(5):473-482. 被引量:1
  • 9张勇,欧宗瑛,侯建华.基于主动轮廓模型的医学图像边界跟踪[J].仪器仪表学报,2002,23(z1):173-174. 被引量:7
  • 10景英娟..医学序列图像分割与描述研究[D].南京邮电大学,2005:

二级参考文献5

共引文献6

同被引文献316

引证文献33

二级引证文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部