期刊文献+

抽象Cauchy问题的适定性与算子半群 被引量:3

THE WELLPOSEDNESS OF ABSTRACT CAUCHY PROBLEMAND SEMIGROUPS OF OPERATORS
全文增补中
导出
摘要 在算子A非稠定、问题解非指数有界的情况下,研究抽象Cauchy问题的适定性及其与A生成的算子族之间的关系.首先,引进(ACP1)的C适定性概念和C半群生成元的全新定义,证明:(ACP1)是C适定的充要条件是A生成C半群.并给出A生成非指数有界C半群的充分条件.另外,引进(ACP2)的(n,k)适定性定义,并讨论(n,k)适定性与积分余弦函数的关系. In the case where A is not defined densely and the solutions are exponentiallyunbounded, we consider the wellposedness of the abstract Cauchy Problem and its relation tothe semigroups generated by A. First, we introduce a new concept- C- wellposedness of (ACP1)and a new generator of C-sendgroups, and prove that (ACP1) is C-wellposed if and only if A isa generator of C-sendgroups; furthermore, we give a condition for A to generate a C-semingroupexponentially unbounded. Secondly, we introduce a new concept-the (n, k)-wellposedness of(ACP2), and prove that (ACP2) is (n+1, n)-wellposed if and duly if A is a generator of 2ntimes integrated cosine function of operators.
出处 《系统科学与数学》 CSCD 北大核心 1998年第2期225-229,共5页 Journal of Systems Science and Mathematical Sciences
关键词 抽象初值问题 适定性 生成元 C适定 算子半群 The abstract Cauchy problem, C-sendgroup, generator, C-wellposedness,(n, k)-wellposedness
  • 相关文献

参考文献1

二级参考文献8

  • 1A. Holderrieth. Matrix multiplication operators generating one parameter semigroups[J] 1991,Semigroup Forum(1):155~166 被引量:1
  • 2M. M. H. Pang. Resolvent estimates for schr?dinger operators inL P (R N ) and the theory of exponentially boundedC-semigroups[J] 1990,Semigroup Forum(1):97~114 被引量:1
  • 3Tosiharu Takenaka,Noboru Okazawa. Wellposedness of abstract Cauchy problems for second order differential equations[J] 1990,Israel Journal of Mathematics(3):257~288 被引量:1
  • 4Ph. Clément,O. Diekmann,M. Gyllenberg,H. J. A. M. Heijmans,H. R. Thieme. A hille-yosida theorem for a class of weakly continuous semigroups[J] 1989,Semigroup Forum(1):157~178 被引量:1
  • 5M. Munteanu,M. Schwarz. A characterization of generators of positive translation semigroups[J] 1989,Semigroup Forum(1):223~231 被引量:1
  • 6Yu. T. Sil’chenko,P. E. Sobolevskii. Solvability of the Cauchy problem for an evolution equation in a Banach space with a nondensely defined operator coefficient generating a semigroup with a singularity[J] 1986,Siberian Mathematical Journal(4):544~553 被引量:1
  • 7S. G. Krein,M. I. Khazan. Differential equations in a Banach space[J] 1985,Journal of Soviet Mathematics(3):2154~2239 被引量:1
  • 8Frank Neubrander. Well-posedness of abstract Cauchy problems[J] 1984,Semigroup Forum(1):75~85 被引量:1

共引文献18

同被引文献8

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部