摘要
在算子A非稠定、问题解非指数有界的情况下,研究抽象Cauchy问题的适定性及其与A生成的算子族之间的关系.首先,引进(ACP1)的C适定性概念和C半群生成元的全新定义,证明:(ACP1)是C适定的充要条件是A生成C半群.并给出A生成非指数有界C半群的充分条件.另外,引进(ACP2)的(n,k)适定性定义,并讨论(n,k)适定性与积分余弦函数的关系.
In the case where A is not defined densely and the solutions are exponentiallyunbounded, we consider the wellposedness of the abstract Cauchy Problem and its relation tothe semigroups generated by A. First, we introduce a new concept- C- wellposedness of (ACP1)and a new generator of C-sendgroups, and prove that (ACP1) is C-wellposed if and only if A isa generator of C-sendgroups; furthermore, we give a condition for A to generate a C-semingroupexponentially unbounded. Secondly, we introduce a new concept-the (n, k)-wellposedness of(ACP2), and prove that (ACP2) is (n+1, n)-wellposed if and duly if A is a generator of 2ntimes integrated cosine function of operators.
出处
《系统科学与数学》
CSCD
北大核心
1998年第2期225-229,共5页
Journal of Systems Science and Mathematical Sciences
关键词
抽象初值问题
适定性
生成元
C适定
算子半群
The abstract Cauchy problem, C-sendgroup, generator, C-wellposedness,(n, k)-wellposedness