摘要
矩形优化排样问题是一个在制造业领域生产实践中普遍遇到的问题,采用了一种改进的最低水平线搜索算法求解此类问题.首先分析了原始的最低水平线搜索算法在排样中存在的缺陷,并针对该缺陷为其设计了一个评价函数,排样时对所有未排零件进行评价,选择评价值最高的零件排入当前位置,从而克服了算法在搜索过程中的随机性,优化了算法的搜索方向.实验仿真的结果表明,提出的算法可以得到较好的排样效果,并且其解决问题的规模越大,优化性能越好,适合于求解大规模排样问题.
Rectangular optimal packing problem is commonly faced by the production practice in manufacturing field. This paper intends to solve the problem by utilizing the lowest horizontal search algorithm. First, the paper analysis the defects of the original lowest horizontal search algorithm, and then design an evaluation function for it. During the packing procedure, the one with highest value will be chosen and packed in the current position after all the items to be packed being evaluated by the function, which overcomes the randomness of the search process and optimizes the search direction. The experimental results show that the improved algorithm gives better placement pattern. In addition, the larger the problem is, the better the algorithm will perform. Therefore, the improved algorithm is suitable for solving large scale packing problems.
出处
《工程设计学报》
CSCD
北大核心
2009年第2期98-102,共5页
Chinese Journal of Engineering Design
基金
国家高技术研究发展计划(863计划)资助项目(2006AA04Z134)
关键词
矩形排样
最低水平线搜索算法
评价函数
rectangular packing
lowest horizontal search algorithm
evaluation function