期刊文献+

梯度微粒群优化算法及其收敛性分析 被引量:19

Convergence analysis of particle swarm optimization and its improved algorithm based on gradient
原文传递
导出
摘要 针对标准微粒群优化算法微粒运动轨迹的收敛性进行了分析,给出并证明了微粒运动轨迹收敛的充分条件.提出一种简便的等高线图判别法,该方法能够通过参数的位置判断微粒轨迹是否收敛并衡量收敛速度.为提高算法的收敛速度,构造出一种梯度微粒群优化算法,给出并证明了该方法收敛的充分条件.仿真结果表明,梯度微粒群优化算法具有优良的搜索性能. The convergence of standard particle swarm optimization algorithm is studied. The sufficient condition for the convergence of the algorithm is given and proved. And a kind of convenient contour map discriminance is proposed. This discriminance can be used to judge if the algorithm is convergent and measure the convergence rate. A sort of gradient particle swarm optimization algorithm is presented to enhance the convergence rate of the algorithm. The sufficient condition for the convergence of this method is given and proved. Simulation results verify the correctness and efficiency of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2009年第4期560-564,共5页 Control and Decision
基金 上海市教委重点学科建设项目(J50602) 上海市教委科研创新项目(08ZZ78)
关键词 微粒群优化 收敛性 梯度 Particle swarm optimization Convergence Gradient
  • 相关文献

参考文献13

  • 1Eberhart R C, Kennedy J. Particles swarm optimization [C]. IEEE Int Conf on Neural Network. Perth, 1995: 1942-1948. 被引量:1
  • 2Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[C]. The 6th Int Symposium on Micro Machine and Human Science. Nagoya, 1995: 39-43. 被引量:1
  • 3谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:421
  • 4Parsopoulos K E, Vrahatis M N. On the computation of all global minimizers through particle swarm optimization [ J ]. IEEE Trans on Evolutionary Computation, 2004, 8(3) : 211-224. 被引量:1
  • 5Kadirkamanathan V, Selvarajah K, Fleming P J. Stability analysis of the particle dynamics in particle swarm optimizer [J ]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 245-255. 被引量:1
  • 6Clerc M, Kennedy J. The particle swarm-explosion, stability and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-64. 被引量:1
  • 7刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 8F van den Bergh, Engelbrecht A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8) : 937-971. 被引量:1
  • 9Shi Yuhui, Eberhart R. A modified particle swarm optimizer [C]. Proc IEEE Int Conf on Evolutionary Computation. 1998: 69-73. 被引量:1
  • 10马东升..数值计算方法[M],2001.

二级参考文献56

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:195
  • 3[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 4[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 5[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 6[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 7[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 8[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1
  • 9[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994. 被引量:1
  • 10[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975. 被引量:1

共引文献524

同被引文献209

引证文献19

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部