期刊文献+

计算机辅助判别超声内镜图像诊断胰腺癌的实验研究 被引量:10

Computer aided endoscopic ultrasonography in diagnosis of pancreatic cancer
原文传递
导出
摘要 目的观察利用数字图像处理技术提取超声内镜图像纹理特征,并运用于胰腺癌诊断的价值。方法随机选择2005年2月-2007年2月间行胰腺EUS检查的216名患者。其中胰腺癌153例,非胰腺癌患者(包括正常胰腺与慢性胰腺炎)63例,所有胰腺癌病例均经EUS-FNA细胞学检查确诊。选择EUS图像并提取纹理特征。根据最优特征组合,通过支撑向量机将病例进行自动分类为胰腺癌和非胰腺癌病例,并计算该诊断方法的敏感性、特异性和准确率。结果根据EUS图像共提取9大类,69个特征用于模式分类特征,其中类间距最大的25个特征被选取作为初始特征。将现有216例病例,随机划分为训练集和测试集,训练集108例(癌症76例,非癌症32例)、测试集108例(癌症77例,非癌症31例),用训练集训练分类器,测试集进行测试。共进行50次随机实验,最终得出胰腺癌分类的准确性为(97.98±1.237)%,敏感性为(94.32±0.0354)%,特异性为(99.45±0.0102)%。结论数字图像处理技术与计算机辅助EUS图像判别法准确率高,无创伤性,为胰腺癌的临床诊断提供了一个新的、有价值的研究方向。 Objective To process the image of endoscopic uhrasonography (EUS) by digital imaging processing (DIP) and pattern recognition, and to evaluate its efficacy in diagnosis of pancreatic adenocarcinoma. Methods Two hundreds and sixteen patients, who underwent EUS between Feb 2005 and Feb 2007, were randomly recruited to the study. The cohort included 153 cases of pancreatic cancer, which were confirmed by cytological findings after fine-needle aspiration, and 63 cases of non-pancreatic cancer ( normal pancreas and chronic panereatitis). The texture features of the EUS image were selected and extracted, and cases were automatically divided into cancer and non-cancer based on findings of support vector machine (SVM). Sensitivity, specificity and accuracy of the technique were calculated. Results From each region of interest (ROI), a total of 69 texture features vest in 9 sets were extracted, and 25 features with most set interval were taken as initial. The images of 216 cases were divided randomly into training set (108 cases, 76 cancer and 32 non cancer) and testing set ( 108 cases, 77 cancer and 31 non cancer). After 50 times of random tests, the average accuracy, sensitivity and specificity of the diagnosis of pancreatic cancer were (97.98±1.237)%, (94.32±0.0354)%, and (99.45 ±0.0102)% respectively. Conclusion DIP, combined with computer aided EUS imaging, is an accurate and noninvasive technique in diagnosis of pancreatic cancer, which warrants novel and further researches.
出处 《中华消化内镜杂志》 北大核心 2009年第4期180-183,共4页 Chinese Journal of Digestive Endoscopy
关键词 胰腺肿瘤 内窥镜超声检查 数字图像处理 支撑向量机 Pancreatic neoplasms Endoscopic uhrasonography Digital imaging processing, Support vector machine
  • 相关文献

参考文献10

  • 1金震东,李兆申主编..消化超声内镜学[M].北京:科学出版社,2006:801.
  • 2Eloubeidi MA, Jhala D, Chhieng DC, et al. Yield of endoscopic ultrasound-guided fine-needle aspiration biopsy in patients with suspected pancreatic carcinoma. Cancer, 2003,99:285-292. 被引量:1
  • 3Harewood GC, Wieersema MJ. Endosonography-guided fine needle aspiration biopsy in the evaluation of pancreatic magses. Am J Gastroenterol, 2002,97 : 1386-1391. 被引量:1
  • 4Varadarajulu S ,Tamhane A, Eloubeidi MA. Yield of EUS-guided FNA of pancreatic masses in the presence or the absence of chronic pancreatitis. Gastrointest Endosc ,2005 ,62 :728-736. 被引量:1
  • 5Fritscher-Ravens A, Brand L, Knofel WT, et al. Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pan creatic lesions in patients with normal parenchyma and chronic pancreatitis. Am J Gastroenterol, 2002,97:2768-2775. 被引量:1
  • 6Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. Clin Radiol, 2004 ; 59 : 1061-1069. 被引量:1
  • 7阎平凡,张长水编著..人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:435.
  • 8Simon H.神经网络原理.北京机械工业出版社,2004:229-252. 被引量:1
  • 9Loren DE, Seghal CM, Ginsberg GG, et al. Computer-assisted analysis of lymph nodes detected by EUS in patients with esophageal carcinoma. Gastrointest Endosc, 2002, 56:742-746. 被引量:1
  • 10Norton ID, Zheng Y, Wiersema MS, et al. Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis. Gastrointest Endosc, 2001,54:625-629. 被引量:1

同被引文献46

  • 1周璐,杨爱明,陆星华.内镜超声诊断胰腺癌的准确性评价[J].中华消化内镜杂志,2005,22(1):9-12. 被引量:6
  • 2无,吴云林.上海不同等级10个医疗机构早期胃癌的筛选结果比较[J].中华消化内镜杂志,2007,24(1):19-22. 被引量:85
  • 3Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. Clin Radiol, 2004,59 : 1061-1069. 被引量:1
  • 4Xia Y, Feng D, Zhao R. Morphology-Based multifractal estimation for texture segmentaion, IEEE Trans Image Processing, 2006,15 : 614-623. 被引量:1
  • 5Lee WL, Chen YC, Hsieh KS. Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans Med Imaging, 2003,22:382-392. 被引量:1
  • 6Christodoulou CI, Pattichis CS, Pantziaris M, et al. Texturebased classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging, 2003,22:902-912. 被引量:1
  • 7Sarkar N, Chaudhuri BB. An efficient differential box-counting approach to compute fractal dimension of image, IEEE Trans Syst Man Cybern. ,1994, 24 : 115-120. 被引量:1
  • 8Chaudhuri BB, Sarkar N. Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell, 1995, 17: 72 -77. 被引量:1
  • 9Wu CM, Chen YC, Hsieh KS. Texture features for classification of ultrasonic liver images. IEEE Trans Med Imaging, 1992, 11 : 141-152. 被引量:1
  • 10Norton ID, Zheng Y, Wiersema MS, et al. Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis. Gastrointest Endosc, 2001,54:625-629. 被引量:1

引证文献10

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部